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Summary. Paradox is a logical phenomenon. Usually, it is produced in type theory, 
on a type Y2 of "truth values". A formula ~ (i.e., a term of type g?) is presented, such 
that ~ ~ ~ (with negation as a term = :Y? --+ Y2) - whereupon everything can be 
proved: 

I 

i 

• 

In Sect. 1 we describe a general pattern which many constructions of  the formula 
follow: for example, the well known arguments of Cantor, Russell, and G6del. The 
structure uncovered behind these paradoxes is generalized in Sect. 2. This allows us to 
show that Reynolds'  [R] construction of a type A ~- f3f3A in polymorphic ),-calculus 
cannot be extended, as conjectured, to give a fixed point of  every variable type derived 
from the exponentiation: for some (contravariant) types, such a fixed point causes a 
paradox. 

Pursueing the idea that 

type theory (propositional) logic 

categorical interpretation Lindebaum algebra 

the language of categories appears here as a natural medium for logical structures. 
It allows us to abstract from the specific predicates that appear in particular para- 
doxes, and to display the underlying constructions in "pure state". The essential role 
of cartesian closed categories in this context has been pointed out in [L]. The para- 
doxes studied here remain within the limits of the cartesian closed structure of types, 
as sketched in this Lawvere 's  seminal paper - and do not depend on any logical 
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operations on the type f2. Our results can be translated in simply typed A-calculus in 
a straightforward way (although some of them do become a bit messy). 

1 Paradoxical structures 

w 1. Russell invented type theory in order to avoid paradoxes. On the other hand, the 
strongest paradoxes arise in a type-free setting. We will show that the germ of the 
most familiar paradoxes is contained in the fixed point (or paradoxical) operator of 
untyped A-calculus: 

Y(t ) :  = a ( t ) .  c~(t), where a(t):  = Az.t.  (x.  x).  

It satisfies the equation Y( t )  = t �9 Y ( t )  for every term t, and produces a paradox by 
~:  = Y(-9. 

This construction can not be repeated in an honest typed A-calculus because it is in 
general impossible to apply a term on itself. However, the categorical interpretation 
of untyped A-calculus shows that the fixed point operator can be constructed using 
many different notions of application: not only "the" application f �9 9, but also the 
composition f o 9 : = Ax. f .(9.z) (also denoted f 9), or even the substitution f [ z  : = 9]. 
(Other possibilities seem less interesting.) 

w 2. The categorical interpretation of untyped A-calculus is well known (see [LSc]). It 
follows the same lines as the interpretation of typed A-calculus (ibidem): the applica- 
tion and the abstraction are interpreted in the cartesian closed structure. The untyped 
case with the surjective pairing requires a category with one object - a monoid - which 
possesses all the cartesian closed structure, except, of course, the terminal object. 

Definition. A C-monoid is a monoid NI with the following adjunctions: 
a) A_ -q _ x _  :NI x NI---* M. 
b) M x _  N M ---~_ :NI---* M, where M denotes the only object of M. 

Notation. M x M is the product in the category of categories, while M x M is the 
product in Nt. Of course, since M is the only object of IV[, we have M x M = M --+ M 
= M. The operation (_,_} is the pairing in the category of categories, while//_,_//is 
the pairing in M. A denotes the functor (ida, ida} :NI -+ M x M. 

Remark. The data of the adjunctions (a) and (b) are natural transformations which 
only have one component each. (a) is given by the transformation 

rr0, 7rl : M  --+ M and the correspondence 

<<_,_ >>:NI x M ( A M ,  (M, M})---* M(M, M x M), such that 

</rc0r, rrlr)/= r and 7ri~lpo,Pl}) = p~, for i 6 {0, 1}. 

On the other hand, (b) is determined by the transformation 

e : M ---+ M and the correspondence 

(_)* :M(M x M, M) --+ M(M, M --+ M), which satisfy 

e((r*rr0, '71-1}} = ?" and (e((q~r0, 7r9))* = q. 

Construction. The fixed point operator in C-monoids can be obtained by a direct 
translation of the A-term Y, constructed in 1. In this translation, the application would 
be defined: 

f "  9: = s((f(grrl)*, id }>. 

On the other hand, in every C-monoid holds 

f o 9 = e((rf n, 9~}, where r f n :  = ( f ro )* .  
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Using this, we can obtain a fixed point operator for  composition: 

Yt : = cIIat, atll, where at  : = rte/(id, id/f n . 

This construction now works in every cartesian closed category. 

w 3. Definition. Let C (from now on) be a cartesian closed category, g2 an object in 
it. A paradoxical structure on D is a triple 

(A E ICl, e c C(A x A,s % " : C ( A  ~) --' C(T,4)) 

(i.e., a "set", a "binary relation" and an "encoding of subsets"), such that the diagram 

e 

AxA _--- 

commutes for every h. 
(Note that are we writing just r-hn instead of rhn o TA : A ---+ T --* A x A. With 

this convention is h o g = e< rhn, g>. We shall proceed with this abuse of notation 
whenever the confusion seems unlikely.) 

Comment. The exponents were not used in this definition; nor will they be needed 
for the arguments which follow. However, they allow the paradoxical structures on 
f) "at stage X E Icl" to be included in the above definition: they can be defined as 
the paradoxical structures on X --* S2. Without the exponents, one should have to 
consider less clean relations and encodings, namely 

e E C ( A  x A x X ,  f)) and r _ n ' C ( A  x X ,  f))--+ C ( X , A ) .  

Theorem.  I f  there is a paradoxical structure on f2, then every t E C(f2, f)) has a 
fixed point Yt E C(T,  D) - i.e., an arrow satisfying the equation ~ o Yt = Yr. 

Proof  Given a paradoxical structure (A, e, r_7> and an arrow t E C(~), f)), define 

ctt: = r t  o e o (idA,idA> "n and Yt: = e o (c~t, c@.  

The following calculation shows that Y is the required fixed point: 

Yt = e o (at,at> = e o < r t o e o ( i d A , i d A } n  at} = t o e o (idA,idA} O at  

= t o e o ( a t ,  a t ) = t o Y t .  [] 

Remark. The insight that the diagonal arguments like the one in the last proof can be 
formalized in cartesian closed categories is due to Lawvere [L]. It took some years 
and rediscoveries before the importance of Lawvere 's  logical approach to categories 
has been fully assessed. 

w 4. Examples.  i. Russell 's  paradox.  Let C be the category of classes and (large) 
functions; so it contains an object A :=  Set, the class of  all sets, and J2 :=  2 :=  {0, 1}. 
Define 

e : S e t x S e t ~ 2  by e ( P , Q ) = I  iff Q c P .  

Frege's unlimited comprehension just asserts the existence of an encoding 

r_n  :C(Set, 2) ~ C(1, Set) 

which to every characteristic function H :  Set ---, 2 (of a subclass of  Set) assigns a set 
rH-~ such that 

H ( Q ) = I  iff Q E r H T .  
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Now take t :  = ~ :2 -+ 2, and consider the set 

c~ = V~e(id, id)7 = {x:x  ~ x}.  

The truth value of c~ E a is 
Y = e(ol, @ .  

Calculating as in Theorem 3, we get 

~ Y = Y .  

ii. C a n t o r ' s  d iagonal i sa t ion .  Let C now be the category of sets and functions, and 
let I2- = 2 be the additive group Z2 with two elements. Suppose that there is a para- 
doxical structure (N, e, r_7 :2N ~ N). Thus just  means that every sequence h : N  --+ 2 
must occur as a row in the matrix: 

e(1, 1) e(1, 2) e(1,3)  e(1,4)  . . .  

e(2, 1) e(2, 2) e(2, 3) . . .  

e(3, 1) . . .  

e ( rh  7,1) e(rh 7,2) e(Vh ~,3) . . .  e(Vh 7 , n ) ( = h ( n ) ) . . .  

Now define 

a(n) :  = e(n, n) + 1 
oz : = Fan 

Y: =e(a,o~)=e(ra 7 , a ) = a ( a , a ) = e ( a , a ) +  l = Y + l .  

iii. GSdel's incompleteness theorems can be interpreted in the cartesian closed cat- 
egory C, freely generated by a single object N, with the partial recursive functions as 
its endomorphisms. Let both s A E IC[ be the object N. Choose an encoding r 7  of  
the formulas and terms of arithmetic, as it is usually done in recursion theory. From 
G6del we know that the substitution can be encoded by a partial recursive function - 
so that in C there is an arrow 

e: = subst :N x N --+ N:(v~p(x)n,n)  ~ r99[x: = n] 7,  

where ~ is a formula. (See, for instance, [S].) The triple (N, e, v n) is a paradoxical 
structure on N, but this time for the substitution, not composition. Indeed, for every 
formula of arithmetic T(X) there is a number Y,- = rT(Y~)-~: 

~ : = q - ( e ( x ,  x ) )  ~ 

Y~- : = r(c~r, o~-) = e(rT(e(x,  X)) 7, oz~-) = r~'(e(ct~-, O~r)) "n = r'r(Y~-)n. 

Using this fact, G6del composed the following variations on the theme of  the liar 
paradox. 

Impossibility of a definition of truth. Suppose that there is an arithmetical predicate 
True, such that for every formula ~ holds 

~- p ~ True(r~pn). 

Take T: = -, True. Then 

r : = T(Y) = ~ True(Y) = ~ True(rT(Y) 7) = -1Tme(rr  

First incompletenes theorem. The encoding r_-I of  formulas of  arithmetic can be ex- 
tended on proofs. (This is standard material of recursion theory.) In this way, the 
provabili ty (F) of a formula can be expressed by an arithmetical predicate Pr, such 
that 

F p  /ff ~ -p r ( r~  7) 
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holds for every formula ~. Now consider the formulas T: = ~ Pr and u: = "r(Y). 
Since run  = Y and u = ~ Pr(Y), we get 

F u =# F pr(Fu n) =# F Pr(Y) =~ F ~-~ Pr(Y) 

==YF -nu, 

hence I / u  ; 

on the other hand 

k ~ u  ~ F ~ Pr ( ru  7) ~ V ~ Pr(Y) 

~ F u ,  

thus F ~ u .  

Hence, neither u nor ~u  are provable in arithmetic. 

w 5. Other notions of substitution lead to just slightly different notions of  self- 
reference. 

Theorem.  I f  there is a paradoxical structure on /2, then every polynomial t(y) E 
C[y: /2 ]  (T , /2 )  has a fixed point Yt E C(T,  [2) - in the sense that t[y: = Y~] = Y~. 
(Here is C[y : /2 ]  the cartesian closed category freely generated by C and an arrow 
y : T ~ / 2 ;  see [LSc]). 

Proof. By the functional completeness, for each given polynomial  t(y) there is an 
arrow a E C(A, /2 ) ,  such that in C[x : A] 

t ( e o  (x ,x ) )  = a o  x .  

Denoting the paradoxical structure still by (A, e, r - ~ ) ,  we define 

O~ t : ~ r a q  , 

~ :  = e o (o~, c~)  = ~ o o~ = t (c  o ( ~ ,  o~d) = t ( ~ ) .  [ ]  

w 6. In untyped A-calculus the fixed point operator can be expressed as a term: 

Y = At.(Ax.t. ( z .  x)) .  (Ax.t.  (x .  x)). 

This is not always the case in categories. In fact, there are several degrees of para- 
doxicality. 

L e m m a .  Consider the mapping 

Y : C ( / 2 , / 2 )  --+ C ( T , / 2 ) : t  ~ Yt,  

defined in Theorem 3. It can be extended to a natural transformation 

:C( /2x  ,/2) ~ C(_, /2) ,  

with ~T = Y if and only if there is an arrow y E C(/2 --~ Y2,/2), such that 

y o t *  = t o y o t *  

holds for  every t E C(/2 , /2)  (where t* E C ( T , / 2  ~ [2) is the right transpose of t ) .  

Proof. Yoneda. [] 

Proposi t ion .  For a category C and an object /2  E Icl, each of  the following state- 
ments implies the next one. 

a) C is a C-monoid. 
b) There is an object A E Icl and arrows i E C(A ~ /2, A)  and r E C(A, A ---+ 

/2), such that r o i = id. (In other words, A ~ /2 is a retract of  A). 
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c) There is an arrow fix C C(12 ~ 12, 12), such that fix og* : g o ((fixog*) x X)  
holds for  every g E C([2 x X ,  12). 

d) There is a paradoxical structure on 12. 

P l vo f  (a) ~ (b) is obvious. (c) ~ (d) follows from the lemma. 

(b) ~ (c): It is easy to see that (A, * r , / o  (_)*) is a paradoxical structure, where 
*r  is the left transpose of r [i.e.*r: = e(r  x A)]. Since the encoding r-_7 appears as 
arrow i, we can now perform the construction of the operator Y for this paradoxical 
structure internally, in order to get the arrow fix. Define 

q: : (*r o (idA, ida))* o T:(12 ~ 12) ---+(A ~ 12) 

and 

comp : = (es2 o ((f2 ~ (2) x CA))* : (12 --+ 12) x (A ~ 12) ---+ A ~ 12. 

The construction of  fixed point can be viewed on the following diagram: 

T 

It* (id, q) comp 
~2~s ~ (~-*~)x(A-~)  ~ A---*~ 

0d,id) m, AxA 

f ix  : = *  r o (~, ~>. [ ]  

Comment. So we have c~t = c~ o t*. Note that the arrow fix induces a fixed point 
operator at all stages (in the sense of Remark3). 

w 7. Proposition. There is a polynomial ~(z)  in the category C[z : (g2 -+ 12) ---+ 12] 
such that an arrow f E C(12 --~ (2, 12) satisfies the condition for  fix in 6(c) i f  and only 
if  ~ ( f * )  = f .  

Proof It is easy to see that an arrow f is an internal fixed point operator at all stages 
[i.e. satisfies 6(c)] /ff the following diagram commutes. 

~...,fl (id, f) _ (~2-~2)~ 

This means that z:  = f *  is a fixed point of the polynomial 

~(z):  ( e ~ o ( i d ~ x ? , * z ) ) *  where *z (zoTx?_,~? , idx?~)  [] 

2 Generalized paradoxical structures 

w 8. If an object 12 of  a cartesian closed category is thought of as the set of  truth 
values, the exponent A --+ 12 is the powerset pA. So let us write foA: : A --~ 12. 



On the structure of  paradoxes 403 

The paradoxes which we considered so far, show - roughly speaking - that when- 
ever faA can be encoded in A, the logical structure o f /2  gets destroyed, because all 
its endomorphisms - including negation - are then forced to have fixed points. How 
about ~afoA, gaga~aA, ganA: could they by any chance be encoded in A? Can ga be an 
operation of finite order on some A? 

Let us immediately say that a positive answer, provided by [R], has preceded these 
strange questions. Reynolds showed that for each inhabited type B in polymorphic 
)~-calculus with equality, there is a type A, such that (A ---+ B) -+ B ~ A. [Without 
equality, one could get a type A which contains (A ---+ B) --+ B as a retract.] If B 
is taken to be the type #2 of truth values, this construction gives a type A for which 
every element of ppA is a "principal filter"! Of course, in set theory, this leads to a 
contradiction. Hence Reynolds' conclusion: "Polymorphism is not set-theoretic". 

At the end of his paper, Reynolds suggested that his construction of a fixed point 
of the functor ((_) --+ B) --+ B could be extended in polymorphic )~-calculus to 
every functor expressible using only the exponentaition (_) -+ (_). We disprove this 
for the contravariant functors p2,,+l. If  any of them has a fixed point, then every 
endomorphism of s must have one. The argument is presented in the setting of 
cartesian closed categories - and can be translated in typed )~-calculus, without any 
use of polymorphism. A proof that Reynolds' conjecture holds for covariant functors 
has been provided in [RP]. 

w 9. Notation. As explained above, we shall write 

ga~ : = X ,  

f ) i x :  = ~ i 7 1 x  ~ #2. 

Simplifying the subscripts of the evaluation arrows: 

e~:fa~+lA • gSiA ---+ #? 

define the following families: 

~ k  : = (6"2k-2)* : ~02k-2A ---+ p 2 k A  

/-91 : = g~l : A "-+ ~ 2 A  

Oi : = qo i o Oi- l  : A  ---+ fo2iA 

- where the indices i and k go over natural numbers. 

Definition. A generalized paradoxical structure of order i on an object #2 of a carte- 
sian closed category C is a triple 

{A �9 ICl, e �9 C(A x fo~A, #?), r_7:C(p~A, Y2) ---, C(T,A)} ,  

such that the following diagram commutes up to isomorphism 

e 
Ax fJiA ~ 

gala 

for every h �9 C(~a~A, #2). 
We call the paradoxical structures of order 0 short; the others are long. 
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Remark. "e o (rh~, foiA) _ h" means that there are automorphisms c on ~2 and d on 
foiA such that e o (ChT, piA) = c o h o d. The reason for this choice of definition is 
that some canonical isomorphisms (X x Y ___ Y x X, X -~ T ~ X . . .  ) occur in the 
fixed point theorem below, and they can in general not be removed. We get the fixed 
points only modulo canonical isomorphisms, and it seems natural to relax the other 
notions too. The isomorphisms have no repercussions for the logical questions which 
are relevant here. The difference between the short paradoxical structures defined 
here, and the paradoxical structures from Sect. 1 will therefore be neglected. 

w 10. Idea. The interpretation of  Russell 's paradox (Example4.i.) suggests that a 
short paradoxical relation e could be understood as the backwards element relation 9. 
In this way, the encoding r-_ 7 could be viewed as a realisation of the comprehension 
principle: for every H E pA, we had 

Vx(H(x) ~ rH-n 9 x) .  

The long paradoxical relations are, however, easier to construct if we think of the 
paradoxical e as the relation E. If  the order is i = 1, then for every H E fopA holds 

V X ( H ( X )  +-+ rH7 E X ) .  

The operation r-_7 now assigns a "limit" r-H-~ to each "filter" H E fJpA. 
For i = 3 and a "filter of filters" H E foppfoA, the operation r_7  returns a "limit 

of  a limit": 

3H1 E p p A V X ( ( H ( X )  +-+ H1 E X)A  

VXf fHf fX1)  +-+ r H 7  E X 1 )  ) ; 

for i = 5, H E p6A, 

3H2 c p4AVX( (H(X)  +-+ H2 E X )  

A3H1 E p2AVX2((H2(X2) ~ H1 C X2) 

AVXI(HI(X1) +-+ r-H7 E XI))) �9 

This set-theoretical intuition leads us to the following constructions. 

Lemma.  eai 1 0  ( ~ i  X ~92 i - lA)  "~ 6"2i_ 2 o ( p 2 i - l A  x ~)i-1).  

Proof 

g'~i'lAx A '- ~i xid 

g 
2i-2 
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Theorem.  I f  a generalized paradoxical structure of  even order exists on ~ ,  then every 
t E C(J2, f2) has a f ixed point Y E C(T,  (2). 

Proof. Let the order of paradoxical structure on Y2(A, e, r T) be 2k. Define 

ao: = t o e o  (idA, O k ) : A - +  s 

ai : = p(a*_ 0 : f~2iA ~ ~ for 0 < i _< k, and 

Oz: = r a  k q  , 

Y :  = e (~ ,  Ok o a )  . 

We shall prove that for every natural number i, 0 < i <= k, there is an isomorphism 

( t )  a i o Oi 0 OZ ~ a i _  1 o 1)i_ 1 o Oz. 

The required proof is then obtained by a descent along these isomorphisms: 

Y =-- e o  (Oz, O k oOz)  ~ a k  o l ) k  oOz ~ a k - 1  o / ) k - 1  oOz ~ . - .  ~ a l  O tg l  o Oz ~ a0 oOz 

--~ t o e o  (oz,0k o Oz) = t o Y .  

A proof of Q): 

, , (2) 
a i  o t9 i o Oz = ( a i _  1 ~ ~ )  o vgi o Oz ~ * ( 0  i o Oz) o a i _  1 ~ c 2 i - 1  o ( 0  i o Oz, a * _ l  ) 

g2 i -1  o ( '0 i X f o 2 i - l A )  (Oz, , (3~) g " 2 i - l A  a *  =- o a i - 1 )  - -  2 i - 2 t ~  x ~ ) i -1 )  o ( i - l ,  Oz) 

* Oz) a i - 1  o 0 i - 1  o Oz = g 2 i - 2  o ( a i _ l ~ ) i _  1 o = 

The marked steps are based on the following facts: 
1) (f  ~ R) o g* = (g f )* ,  f :  P --+ Q, g : Q  ~ R.  

p t . _ Q  

(Q--,R)xf 
( Q ~ R ) x P  '- (Q~R) x Q 

(P--* R) x P. ,- R 

Here we write 9" for g* o Tp  : P -+ T --+(Q ~ R). Note that for P :  = T holds 

(9 f )*  ~ g f .  
2) 0~ o Oz = (e2i-I o (0~ o a x ~2i-lA))*. 
3) Lemma. [] 

w 11. The preceding theorem allows variations analogous to those in w167 5-7. Let us 
formulate only the statement which answers the question asked at the beginning of 
this section. 

Corollary.  I f  there is an object A such that ~92k+1A is a retract of  A for  some natural 
number k, then every endomorphism t C C(g?, (2) has a fixed point. 
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Proof. If  r E C(A, p2k+tA) is a retraction, with i E C(fo2k+IA, A), such that ri = id, 
then 

(A, *r, i o (_)*} 

is a paradoxical structure of  order 2k on 22. [] 

w 12. Comment .  In this paper, we saw an object 22 which tried to be the set of  truth 
values, but another object A came along and disclosed that 22 was inconsistent. The 
paradoxical structure of  A consisted of  a relation > :=  e and an encoding r_  7, which 
assigned to every predicate x : A  -+ 22 an element rZ7 of A such that 

X(x) ~ rX~ > x .  

We then defined a formula c~ by 

a(x)  ~ ~ x  > x 

and obtained a paradoxical formula: 

r  = r c ~  > r ~  +_+ ~ ( r ~ )  +_+ - 4 - c ~  > ~ c ~  = -~r  

This scheme is suitable for a simple categorical interpretation, because it requires 
so little logic: one only has to decide to call an arrow to 22 formula, to call an 
endomorphism of  22 negation, and to interprete ~-+ as the equation (in Sect. 1) or 
an isomorphism (in Sect. 2). If, however, some more logic is provided, the concept 
of paradoxical structure can be modified in various ways. For instance, the main 
requirement on the encoding may be weakened to 

X(x) ~ rx~ > x .  

In other words, X need not be conprehended, but may be just bounded by rxT. This 
is, of  course, not very paradoxical - but it does lead to contradiction if  there is a 
particular predicate w which satisfies 

w(x ) - - -+-~x>x  and w(rw 7) 

(i.e., its extension is irreflexive and closed with respect to the relation >).  If  a~ is a 
description of the class of well-founded sets, this last scheme conveys the well-known 
paradox of  Burali-Forti  and Girard (cf. [TvD], Ch. l l ,  7.4). Although it does not 
involve fixed points, the construction is clearly related with the paradoxical structures 
which we studied here. 
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