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Abstract

In categorical proof theory, propositions and proofs are presented as objects and arrows in a category.
It thus embodies the strong constructivist paradigms of propositions-as-typet and proofs-as-construc-
tions, which lie in the foundation of computational logic. Moreover, in the categorical setting, & third
paradigm arises, not available elsewhere: logical-operationa-aa-adjunctions. It offers an answer to
the notorious question of the equality of proofs. So we chase diagrams in algebra of proofs.

On the basis of these ideas, the present paper investigates proof theory of regular logic the
{A,3}-fragment of the first order logic with equality. The corresponding categorical structure is
regular fibration. The examples include stable factorisations, sites, triposes. Regular logic is exactly
what is needed to talk about maps, as total and single-valued relations. However, when enriched
with proofs-as-arrows, this familiar concept must be supplied with an additional conversion rule,
connecting the proof of the totality with the proof of the single-valuedness. We explain the logical
meaning of this rule, and then determine precise conditions under which a regular fibration supports
the principle of function comprehension (that each map corresponds to a unique function viz arrow
in the base), thus lifting a basic theorem from regular categories (e.g. [12, 2.132]), recently relativized
to factorisation systems [22, 42). The obtained results bring us a step closer to extending the jP-set
construction [20] from triposes to non-posetal fibrations, and thus closer to 'toposes' accommodating
categorical proof theory.

1 Introduction

The basic ideas of constructive logic cristallised very slowly. The Brouwer-Heyting-
Kolmogorov interpretation of proofs as constructions had evolved through the first
half of this century [4, 16, 23]. It motivated the well-known debate about foundations
and, indirectly, the creation of reanzability in the fourties. Most of the time, however,
this conception of strong constructivism was overshadowed by simpler ideas, boiling
down to the rejection of Excluded Middle.

The search for a mathematical theory of constructions was propounded in the six-
ties, when computer science was making its first steps (cf. [30], especially [46]). The
main result of that search is the discipline of logic as type theory, the sine qua non
of virtually all logical frameworks for computation [18]. The underlying foundational
principle is the so called Curry-Howard isomorphism of propositions and types. At
first, this isomorphism was just a remark about a 'striking analogy between the the-
ory of functionality and the theory of implication' in Curry's book with Feys [11,
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sec. 9E] from 1958. Eleven years later, the remark was developed in a widely circu-
lated manuscript by Howard (which awaited actual publication [17] for another eleven
years). In the meantime, Lauchli's completeness theorem [29] and AUTOMATH, the
very first logical framework [5, 6, §14], had already put the propositions-as-types at
work. The two facets of this paradigm were recognized in the very successful type
systems due to Martin-Lof on one side [36], and to Girard [13] and Reynolds [44] on
the other. Synthesis of these systems led to the Theory of Constructions [10, 21], the
most comprehensive [40] type system so far.

The categorical part of the story goes back to the sixties too. The first ideas
of categorical logic were conceived in Lawvere's pursuit of foundations. Lambek's
investigations in linguistics and algebra, on the other hand, led to a concrete analysis
of the parallelism between proof theory and categories.

While developing his syntactic calculus [24, 25], Lambek noticed that generating free
categories resembled proof derivation in the Gentzen-style calculi of sequents. In [26],
he formalized the view of arrows as labelled proofs from and used the cut elimination
to deal with some categorical questions. Category theory promptly accepted the
proof-theoretical methods [34], but proof theory never really profited from categorical
methods1 — except perhaps indirectly, through categorical semantics of type theories,
still based on Lambek's ideas [28].

Lawvere's ideas, on the other hand, seem to be leading beyond type theory. The
keyword is adjunction. It reduces Curry's 'striking analogy between the theory of
functionality and the theory of implication' to the fact that both the function-space
constructor (—)A and the implication P => (—) are right adjoint to some product func-
tors — namely, to A x (—) and PA(- ) , respectively. In a hyperdoctrine, the structure
that captures predicate logic, all logical operations were presented as adjunctions [31].

In the present paper, we shall study a structure closely related to hyperdoctrines.
So let us recall that a hyperdoctrine was defined as a functor V : Cop -4 CAT, assigning
to each 'set' A £ C a. category of 'predicates' V(A) over it, usually cartesian closed;
and to each 'function' f : A -* B in C the 'substitution' functor

V(f) : V{B) -»• V(A) : Q{y) *• <?(/(*)).2

The quantifiers are represented as the functors adjoint to the substitution along a
projection p : A x B -4 A:

3y-iVp-{Vy: V{A x B) -4 P(A) : R{x,y) i-> Vy.R{x,y).

This representation is justified by the derivation rules

P(x, if)->R(x, y) R(x, y) -4 P(x, V) ...
(V) (d)

P(x) -4 Vy.R(x, y) 3y.R(x, y) -> P(x)

where P(x, / ) stands for P(p(x, y)). In ordinary sequent calculus, these rules speak for
themselves. However, when proofs are not reduced to mere entailment, but preserved
as arrows in a category, one must decide which particular proof 3y.R(x, y) -4 P{x)

1 It ia haxd to a*a a ruaoa for thiat other than iubj«ctiv*. The main ob«t«cltts to c&tttgoric&l proof thaory, a.g. u
ualyrad by Dana. Scott in (48], had bwn ramovtd by 1970 [31, 32).

Thia notation will ba formalized in e«ctioa 1.
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should be assigned to a given proof R(x, y) -> P(x, )f) in (3); idem for (V). Our logical
experience suggests no uniform answer to such questions: the distinctions between
particular proofs appear to be just as noncanonical as formal systems in which we
present them.

Questions of this kind often arise in proof theory [43]: transformations, reductions,
conversions of proofs are successfully approached by type-theoretical means. Com-
puter science amplifies all this by demanding a genuine logic of proofs, as opposed to
the traditional provability logic. However, there are fundamental questions, for which
our logical intuitions do not offer a sufficient lead. For instance, Girard's [13] and
Martin-Lof's [36] type theories depict the quantification quite differently — and sug-
gest, in particular, different term decorations of rule (3). Some computer scientists
argue that Martin-Lofs way correctly describes the actual structure of programs [35],
while others prefer Girard's way [37].

The categorical proposal is that the derivation rules like (3) and (V) should be
enriched to adjunctions. This means that, say, correspondence (3) should be realized
by composing with some proofs

r)R : R(x,y) -* 3y'.R{x,y',f) and
y) -> P(x),

given uniformly in R and P (i.e. natural), and such that both composites

R(x,y\y) -+ 3y'.R(x,y')

derived from them reduce to the identity.
In general, the notion of adjunction is thus offered as a uniform way to extend

some logical concepts beyond the level of entailment and despite the shortcomings
of intuition. The uniformity is, of course, not always welcome and this idea should
not be used as a Procrustean bed. Linear logic, for instance, does not arise entirely
in terms of adjunctions. But for the basic constructs, the adjunctions seem to be
working remarkably well. In [32], Lawvere has described the comprehension scheme,
assigning to each predicate P(x) a set {i|P(x)}, as an adjoint functor. In [33], he
has explained how maps, as total and single-valued relations, can be presented as
self-adjoint bimodules. This idea is central in the present paper.

In the next three sections, we introduce the categorical setting for generalized reg-
ular logic, present some typical examples, and describe the formal concept of map.
The main theorem, characterizing maps relative to a regular fibration, is stated and
proved in section 5. It is meant to be a step towards feasible reasoning in strongly
constructive logic. Although conceptually quite solid, the original definition of a map,
in terms of adjunctions, turns out to be impracticable in general non-posetal situa-
tions: expanding and demonstrating the adjunction equations on proofs is usually
too demanding to be justified in routine reasoning with maps. Our characterisation,
however, replaces the adjunction equations by a more manageable condition: maps
are just the total and single-valued relations which happen to be subterminaL Of
course, while eliminating some proof-chasing from the notion of map, this simple re-
sult demands a certain amount of chasing itself. The proof is reduced to two special
lemmas, worked out in section 6.
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On a technical level, the message of our main theorem is that the proofs involving
maps alone are always unique. In other words, on maps — all the proof diagrams
commute. Only this insight makes some general tasks involving maps tractable. They
are illustrated on examples in the subsequent sections.

Conceptually, on the other hand, the upshot of the story on maps is that the
extensional part of strongly constructivist logic is inherently posetat all reasoning
about the base of 'sets and maps' boils down, by its nature, to logic of entailment.

Together with [41], the presented logical analyses are a part of an effort towards
understanding universes with strongly constructivist logic, which relativize the notion
of a topos. In this framework, regular fibrations generalize sites (cf. 3.2). An object
in the base of such a fibration is a 'sheaf' if it is Cauchy complete, i.e. if every map to
it extends to a unique arrow.3 A regular fibration is thus 'subcanonicaT if it supports
the principle of function comprehension: all objects are Cauchy complete. In section
7, an analysis of the site representation of regular fibrations yields the necessary and
sufficient conditions for the function comprehension. We get a subcanonicity test
applicable, for instance, to triposes.

But the main direct goal of the presented study of maps is actually to allow lifting
of tripos theory [20] to non-posetal situations. With maps as adjunctions, this is a
completely unfeasible task. With the presented results, though, a general form of the
p-set construction, that led to the Effective Topos [20], seems to be within reach.
It is briefly discussed in the final section, eighth. In a forthcoming paper we shall
investigate how much topos theory can be lifted to these general p-sets with strongly
constructive logic.

Some abstract facts, needed throughout the paper, have been listed in the Ap-
pendix. The lemma proved in part C is the germ of our main result. In fact, they are
both just symptoms of a remarkable stability of the concept of adjunction: all of its
rich structure is often derived from modest and relatively simple requirements.4 In
principle, deriving proofs using adjunctions is 'simpler than it looks'. Like sentences
in natural language, they can be lengthy, but easy to understand — although perhaps
difficult to analyze and lay out. This experience of categorical proof theory at work
is perhaps the most valuable result of the present paper.

For reading 'Maps II', no acquaintance with 'Maps I' [42] is necessary. The theme
is still the same, and the results of that paper can be derived from this one; but the
conceptual background is different and, in a sense, complementary. Ironically, this
is reflected in the fact that even the order of composition had to be changed: the
composite of / : A -»• B and g : B -t C is here (/; g) : A -> C.

2 Regular fibrations

When presented by a functor V : C09 -+ CAT, the formulas of predicate logic are
stratified according to their contexts of free variables: each category V{A) contains
just the predicates P(x), where x is of type A. In order to 'chase proofs', however, we
need often to have all the predicates displayed together. Using the Grothendieck con-
struction [14, 1.5.], we can 'glue together' all V{A) into a total category of predicates
p, and replace the functor V :Cop -^ CAT by a functor P : p -* C.

3Thii id«a h u b««n worlud out by Waltsn in [40],
4P«rh»p« the only comparably robust m&£h«matic*l conctpt is holomorpbictty.
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To collect the objects of p, take the disjoint union of all V{A). A typical object of
p is thus a pair (A,P(x)), with A €C and P(x) 6 V{A). An arrow from (A,P(x))
to (B,Q(y)) in p is then a pair (/,<p), where / : A -> B is a 'function' in C and
tp : P(x) —> <?(/(*)) is a 'proof in V(A). The functor P : p -»• C is the first
projection.

The described passage from an indexed category V € CAT0 to a fibration P €
CAT/C can be understood as a point-free generalisation of the passage from a sheaf
F € SetO('x)°" to the corresponding espace itali E € Esp/X. Fibrations could be
denned as the functors (equivalent to those) which are obtained from indexed cat-
egories V : C"*" -> CAT by the Grothendieck construction. The other way around,
from each fibration p one can get back an indexed category V. The object part
is recovered in the obvious way: V(A) is just the fibre p(A) of P — namely, the
subcategory of p consisting of those objects and arrows which P projects on A and
its identity. To get the arrow part of V, one uses the observation that the arrow
(/, id) : Q{f(x)) —• Q(y) in p is terminal among all arrows to Q(y) which the
functor P projects on / : A -»• B. This couniversal property determines the object
Q(f(x)) = Vf(Q(y)). The arrow part of the functor Vf follows from it. The arrow
(/, id) is a cartesian lifting of / at Q. The structure of an indexed category V is thus
encoded in the corresponding fibration P by this specific property of cartesian liftings.

A formal definition of a fibration and explanations about some related notions can
be found in Appendix A. For an insider, let us reiterate that, for this paper, the
essential feature of the fibrational setting is the total category p of predicates, rather
than the 'difficult' issues surrounding the canonical isomorphisms and the reduction
of structures to properties. Indeed, all the logical structures considered here are given
by universal properties, and we can — and shall — safely work modulo isomorphism.
DEFINITION 2.1
A functor P : p -+• C is a regular fibration if

• C has finite products,
• p has finite fibrewise products,
• P is a bifibration, satisfying the Beck-Chevalley and the Frobenius conditions.

Logical notation. One of attractive features of categorical logic — particularly for
computer science — is that it can be developed in a variable-free way. This is elegantly
explained in [27]. We shall, however, proceed in the opposite direction and reintroduce
the notation with variables, pursued so far informally. (It will sometimes have to be
combined with the standard notation, summarized in the Appendix.)

Let a regular fibration P : p -* C be fixed. p(A) is its fibre over A. The metavari-
ables A,B,C... f,g,h... are reserved for the objects and the arrows of the base cate-
gory C. The objects of the category p are called predicates and written P(x) € p(A),
Q(y) £ p{B), R(x,y) e p{A x B). The arrows of p will be called proofs: they are
denoted by Greek letters <£,7,x--- The superscript of a proof tells its image in C:
we write ip* when P(<p) = f. The vertical arrows (i.e., those from fibres) have no
superscript.

While AxB denotes a product in the base C, Q/\Q' is a product in a fibre p{B). The
projections are p : Ax B -t A and q : Ax B -t B (or p' : Ax B —t B), as opposed to
•K :QAQ' -•QandTr' : QAQ' -*Q'. The diagonals are d := (id, id) : A - ^ A x A a n d
6 : Q -» Q A Q. The terminal object in C is 1, as opposed to the truth T(y) € p(B).
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The inverse images along an arrow / : A -> B from C will be presented as substi-
tution instances. For instance,

<?(/(*)) := /'(<?) or

R(xJ(x')) := (idAxf)'(R).

The usual conventions for the manipulation with variables are supported. To identify
two variables of the same type, one takes an inverse image along the diagonal:

=<TA((idA x f)'(R)) = (xdA,f)'(R).

As mentioned in the Introduction, a predicate with a dummy variable P(x, y) cor-
responds to the inverse image p*(P) along a projection p : A x B -»• A. Since
P(x) A Q(y) obviously denotes P(x, y) A Q(yi,y) = p*(P) A q*(Q), the dummies are
often left implicit. In some cases, we write P(x, if) as P(x) A T(y). Consequently,
i?(i, y) -+• S(y, z) means that there is a proof R(x, y, f) -4 S(#, y, z) in p{A xBxC).
But i?(x, y) —¥ P(x) can equivalently denote a proof over p : A x B —¥ A.

The correspondence of the substitution and the inverse images is the well plough-
ed ground of categorical logic. It is fairly innocuous, although some details may be
subtle. The situation becomes more complicated when it comes to the direct images.
The Beck-Chevailey and the Frobenius conditions play the main roles.

Stability conditions. The idea is that the direct images should correspond to the
quantification:

3y.R(x,y):=pi(R)-

As explained in [39], the formula 3y.i?{x, y, f) can now be assigned two different

interpretations: p\(q*(R)j and q*(p\(R)) — over the pullback square (p;q) = (q;p)

spanned by the projections p : Ax B -> A and q : A x C -* A. Inpi (q'(R)), we first

add the dummy z and then quantify over y, while in q* (pi (R)) we first quantify and
then add the dummy. The Beck-Chevalley condition now says that both ways lead to
the same result. The Frobenius condition, on the other hand, ensures an isomorphism
between the predicates P(x) A 3y.R{x, y) and 3y.P(x) A R{x,y).

The logical notation for regular fibrations is well-defined only when these two condi-
tions are satisfied. They guarantee that quantifying over a variable does not interfere
with other variables. The other way around, the commutativity of operations on vari-
ables, expressed by the stability conditions, is implicit to the notation of predicate
logic. By hiding the logically irrelevant isomorphisms, this notation simplifies the
presentation of logical constructions.

Equality. So far, we have found a logical expression for the direct images along the
projections. Now we shall do the same for the direct image f\{P) along an arbitrary
arrow / : A -v B.

First of all, recall Lawvere's [32] definition of the equality predicate:

(y'kj") := d,(Tfl), (2.1)
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where d : B -+ B x B is the diagonal. The predicate y'sy is the internal equality of
a regular fibration. Applying the Beck-Chevalley condition, we get things like

(/(x)Sy) = (/xB)'(I) a (idM./MT*)

The following special case of the last formula sheds some light on the idea behind
(2.1).

(l/W) 2 3y.d(y)s(y',v").

Using the internal equality, one can express all the direct images in logical form.

PROPOSITION 2.2

For an arrow / : A -+ B in C and predicates P(x) € fp(A) and i?(x,y) 6 p(A x B),
we have

2. (d* x B

Case 1 has been proved in [32, p. 9]. Note that the substitutivity of equality

P{x) =* (3x'.xsx' A P(i')), (2-2)

is obtained as the special case / = id. On the other hand, for 5 6 p(A x C),
isomorphism 1 extends to

( / x C ) , ( 5 ) S (3x./(x) syAS(i,z)). (2.3)

Case 2 is an easy exercise with the stability conditions.
Let us summarize. From every expression denoting an object of a regular fibration

in the standard (variable-free) way, we can remove all the occurrences of /* and
f\, and replace them by instances of the substitution or the quantification, using
suitable internal equations with / . When / is a projection or a diagonal, it can be
removed altogether, since the inverse images along these arrows correspond to certain
operations on variables, while the direct images represent either a quantifier or an
equality predicate.

We close this section with a useful lemma, easily derived from A.8(2) and B.4(3).

LEMMA 2.3

For every object B, the equality predicate y'sy is a subobject of the terminal object
in p(B x B) — i.e., it is a subterminal object.

3 Examples
EXAMPLE 3.1

Every stable factorisation (£, M) in a finitely complete category C can be presented
as the regular fibration Cod : M/C -»• C, where M/C is the full subcategory of the
arrow category C/C, spanned by the .M-arrows, and Cod is the codomain functor. A
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fibre of this fibration is thus the category M/B, spanned by the M-arvovfs in the
slice C/B. An inverse image of b € M/B along / : A -» B is an arrow /*(&) € M/A,
obtained by pulling b back along / . A direct image f\(m) of m 6 M/A along / is an
X-image of the arrow (m; / ) .

This is the level of generality of the paper 'Maps F [42]; all the examples consid-
ered there induce regular fibrations. Ordinary first-order logic is represented by the
fibration Cod : Mon/Set ->• Set, where Mon is the class of monies. Of course, Set can
be replaced by any topos, or even a regular category C. Indeed, a left exact category
C is regular if and only if Cod :Mon/C-»Cisa regular fibration.

Stable factorisations thus yield an important source of regular fibrations. Without
going into details, let us mention that a regular fibration P : p -+• C is equivalent
to one obtained from a stable factorisation in C if and only if it is comprehensive —
i.e., we have P H T H D : p - t C — and, for every opcartesian arrow a, the arrow
T(D(cr)) is again opcartesian.

EXAMPLE 3.2

One of the basic ideas is that regular fibrations generalize sites. Of course, every site
must induce a regular fibration.

For every A € C, the domain functor Dom : C/A —• C is a fibration. These and
equivalent fibrations are called representable: by the Grothendieck construction, they
correspond to the representable presheaves. By definition, sieves are subfibrations of
representable fibrations. A sieve over A can be presented as a class U C C/A, such
that

u £ U = > (h;u) £ U, for every h.

The domain functor makes the class of arrows U into a fibration.
Now let fi be the category of all sieves in C. If U C C/A and V C C/B are

sieves, the hom-set Sl(U, V) will by definition consist of all the triples {/, U, V) where
/ € C(A, B), and for every u € U, (u; / ) € V. If we project all the sieves over A to A,
and (/, U, V) to / , we get the regular fibration ft : fi -> C, provided that C is finitely
complete. The inverse and the direct images are respectively

f'(V) := {u e C/A | («; /) € V) and (3.1)

••= {{u;f)\ueU} (3.2)

A topology on C is a A-closed subfibration J : J -t C of fi : Cl -»• C. In other words,
each fibre J e consists of some sieves — the covers of B. If V is one of them, then
f*(V) must be a cover of A, for every / 6 C(A, B). If V and V are covers of B, then
V A V = V n V must be a cover of B too.

A site is a pair (C, J), where C is a finitely complete category and J a topology on
it. Associated with this topology, there is a closure operator — a cartesian functor
j : ft -¥ Q, defined

]{V) := {f\3Ue 3.MU) C V). (3.3)

A sieve V is said to be closed if j(V) = V. Let f2j be the full subcategory of ft,
spanned by the closed sieves. The restriction ftj : f2j ->• C of the functor ft is the
regular fibration associated with the site (C, J).

To view all this in a more familiar setting, notice that both ft and ftj are fibred
locales. The latter is a regular sublocale of the former; in other words, the bicartesian
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functor j : ft -+ fij is fibrewise a surjective morphism of complete Heyting algebras. If
the size conditions are met, so that all the involved categories exist, fl is the subobject
classifier in the topos of presheaves over C, while Qj is the subobject classifier in
the topos of J-sheaves. More precisely, they correspond to these classifiers by the
Grothendieck construction.
EXAMPLE 3.3
Triposes provide another representation for toposes, rather different from sites — and
a different kind of regular fibration. A tripos [20] is a globally small hyperdoctrine,
which is fibrewise a Heyting algebra. Just as any other hyperdoctrine, it yields a
regular fibration by the Grothendieck construction. And we say that a fibration
P : p -* C is globally small when there is a generic object £ € p, such that every
object of p is its inverse image along some arrow. Intuitively, the object T := P(f)
represents the set of truth values (or propositions) of the associated topos — in the
sense in which the tripos represents a topos; and the generic predicate £ can be
understood as a prepositional variable.

The original Realizability Tripos [20, §1.7.] can be easily transformed into a posetal
regular fibration. Instead of spelling this out, let us describe a closely related non-
posetal example. It is still a globally small fibration, but not locally small; and it
still corresponds to a hyperdoctrine over Set. The fact that it is not locally small [3]
implies that it cannot be represented in Set by a small category. Nevertheless, it is
in a sense derived from a small category — namely from the category of modest sets,
the subquotients of natural numbers. In a similar manner, the Realizability Tripos
has been obtained from the lattice of subsets of natural numbers.

Following Hyland [19], let us define a modest set as a set X equipped with a
surjective function |X| -» X, where \X\ C N is a set of natural numbers. Each
element i € X thus comes with a disjoint set of codes \x\ — the part of \X\ that the
function \X\ -* X projects to x. A function xp : X -)• Y is said to be traced by a
natural number n e N if the partial recursive function3 n' : N —»• N is defined on all
of \X\ and if it maps the codes of x € X to codes of rp(x) € Y. This will make the
following diagram commute.

(3.4)

Let the objects of the category Mod be the set-indexed families of modest sets. If
(Xa) = (Xa)a€A and {Yt) = {Yb)beB are two such families, an arrow (Xa) -* (Yb) in
Mod will be a pair (f,<p), where / : A -+ B is a function in Set, while y? = (<pa)aeA
is a family of functions <pa : Xa -»• V/(a) which are traced by some number n € N —
the same for all of them.

Projecting {Xa) to A and (f,<p) to / , we get the fibration M : Mod -»• Set. The
inverse images are simply

f(Y>) :=
*Mor« f&miliu* notation would ba Ki**n«'t {n}, or <^n; but Qodal'a n* n mor« convenient for a later development.
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Using the basic properties of the encoding of partial recursive functions by natural
numbers, one easily shows that Mod is fibrewise cartesian closed. We shall just sketch
how the direct images f\{Xa) are constructed.

For / : A -)• B and an ^-indexed family (Xa), the image f\(Xa) will be the B-
indexed family (X'b), where each set X'b is obtained in the following pushout (in Set).

Uf(a)=b I U/(o)=6

•XL

(3.5)

In words, the set X'b is the quotient of the disjoint union of all Xa, such that /(a) = b,
by the transitive closure of the relation

(a,x) ~ (a,x) :«=>• 3n € | i | D |x|.

To make X'b into a modest set, take

\X'b\~ (3.6)
/(o)=6

and use the surjection at the bottom of diagram (3.5) as the encoding \X'b\ -> X'b.
The opcaxtesian arrow af : (Xa) -> f\(Xa) will be the pair {f,rj), where the

components r]a : Xa -> A'^ . of 77 are obtained by composing the obvious inclusion
Xa ^ U / ( c ) = / ( o ) A'c with the quotient map Uf(e)=,{jl)Xc -»• X'J(a). AU r?a are
traced by a code of the identity function on N — which restricts to the inclusion
\Xa\ •-• |A'^,aj| = U/(c)=/(a) l-̂ ol- Checking that af is indeed opcartesian is left to
the reader.

A choice of all the direct and all the inverse images will, of course, determine the
adjoint functors f\ H /* : Mods -> Mod^. Note that /* has also a right adjoint
/ . : Mod.4 -»• Mode- The right direct image9 f.{Xa) will be the famUy {Xb), where
each Xb is obtained in the surjective-injective factorisation on the next diagram.

nf(a)=b \

-<*- Ylf{a)=b

(3.7)

A d w c n p t i o D of th« univ*rs&l property which ch&ractorix«a it can b* found in {38, II .3 .2] .
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EXAMPLE 3.4

Every fibration F : V -> C with the finite limits in C and the finite fibrewise products
in V induces a free regular fibration

Cod : F/C -» C : (R,r : F{R) -+A) *-+A.

The observation that the comma category F/C freely adds the stable direct images to
the fibred category V is due to Be'nabou [2]. These direct images are obtained simply
by composing:

MR,r):=(R,(r;f))

Since the finite fibrewise products can be freely added to any fibration, this construc-
tion actually yields a left adjoint to the inclusion of regular fibrations in the general
ones, over a finitely complete base.

4 Maps relative to a regular fibration

In the rest of the paper, we shall try to see some regular logic at work. The question
will be: Given a regular fibration P : p -> C, what does the category of 'predicates' p
'know' about the category of 'seta' C? Can it capture the notion of 'function', which
comes with the arrows of C? Of course, every arrow / : A -> B in C induces a predicate
f(x)=y in p(A x B). Is there an intrinsic characterisation of the predicates which
come from C in this way? — Well, in set theory, a predicate represents a function if
and only if it is total and single-valued. These concepts can easily be expressed in
the setting of regular fibrations.

DEFINITION 4.1

A predicate R(x, y) e p(A x B) is said to be

• total (in x) if there is a proof

7J:T(z)—>3y.R{x,y), (4.1)

• single-valued (in y) if there is a proof

i:R{x,y')AR(x,y)-+y'sy. (4.2)

Predicates in the form f(x)=y are always total and single-valued. In 'ordinary' logic
of subsets, i.e. with respect to the fibration Cod : Mon/Set -> Set, the converse holds
too: every total and single-valued predicate — a map — must be in the form f{x)=y
for a unique function / . However, for the regular fibration Cod : Set/Set -> Set,
e.g., this will not be the case. In this fibration, a predicate (a,b) : R -+ A x B is
total if and only if a is a split epi; and it is single-valued if and only if a(x) = a(y)
implies b(x) = b(y). (Cf. [42, lemma 5.2].) Not all the predicates which satisfy these
conditions are in the form f{x)sy, which is in fact (id, / ) : A -> A x B. The situation
is not hopeless, since each total, single-valued predicate (a, b) does induce a unique
/ : A -¥ B, by composing 6 with the splitting of a; but each / is induced by a proper
class of such predicates.

The idea how to narrow down the total, single-valued predicates, so as to better
approximate the 'functions' from C, follows the observation that the totality and
the single-valuedness of a predicate are, in a sense, dual properties. This becomes
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apparent when the proofs fj and i from 4.1 are slightly modified

r, : x=x' —>3y.R(x,y)f\R(x',y) (4.3)

e •. 3x.R(x,y')AR(x,y)^y'^y. (4.4)

Note that nothing is lost: i) can be recovered from 77, and i from e. The idea is now
that 77 and e should express an adjunction, i.e. that R(x,y) is self-adjoint. Instead
of being separate proofs of independent facts, TJ and e would be tied together by the
adjunction equations. In the present situation, they are dual to each other, and boil
down to forcing the composite

R(x,y) —> 3x'y'.R(x,y')AR(x',y')*R(x',y) —> R(x,y)

to reduce to the identity.
This strengthened notion of a map turns out to work much better. For instance, a

predicate (a,b) : R —• A x B in the regular fibration Cod : Set/Set -> Set is self-adjoint

if and only if it is isomorphic to one in the form (f(x)=y) = (id,f). This remains true

when Set is replaced by an arbitrary finitely complete category C and, more generally,
when instead of the whole arrow category C/C, any subcategory M/C, spanned by
the abstract monies M. of a stable factorisation system is considered [42]. And yet, it
remains unclear why adding the adjunction equations is a step in the right direction:
what is their logical significance? Moreover, they tend to be quite complicated to
work with: is there a simpler form?

To approach these questions, let us describe in more detail the setting in which the
maps are defined.

Bicategory of predicates. A regular fibration P induces a bicategory of predicates,
just like a regular category induces an allegory [12]. For a formal introduction to
bicategories, the reader is referred to [2].

By definition, the objects of the bicategory of predicates 72. = 7£p, associated with
the regular fibration P : p —y C, are the objects of C. The hom-category from A to B
consists of the predicates on A x B:

TZ(A1B):=p(AxB).

A predicate R(x,y) 6 p(A x B) thus appears as the 1-cell R : A^B in Tl\ a proof
a : R(x,y) -> R'(x,y) as a 2-cell. (Note the slash on the arrow denoting a 1-cell.)
The objects of C are the 0-cells.

The composite RS : A++C of the 1-cells R : A++B and S : B++C will be the
relation

RS(x,z):=3y.R(x,y)AS(y,z) [= p, (r'(R) A s'(S))). (4.5)

Exactly the same formula defines the 'horizontal' composite a0 : RS(x, z) ->• R'S'{x, z)
of 2-cells a : R(x,y) ->• R?{x,y) and 0 : S(y,z) -> S'(y,z). The 'vertical' compos-
ite of a : R(x,y) -*• R'(x,y) and a' : Rf{x,y) -> R"(x,y) is, of course, the proof
(a;a') : R(x,y) -»• R"(x,y) in p(A x B).

Composition (4.5) is associative modulo the isomorphisms that arise from the sta-
bility conditions. Furthermore, proposition 2.21, implies that the equality predicate
x=z' can play the role of the identity relation 1: A++A.
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The fibrewise products from P yield the finite products in the hom-categories of TZ.
The products from C induce in ~R. a tensor, with (lax natural) diagonals, codiagonals
etc. — the structure known from [9]. There is also a duality

(_)» : -£°P -+n (4.6)

which leaves the 0-cells unchanged, and maps the hom-category TZ(A, B) to "R.{B, A)
by the functor

c* : p(A x B) —» p(B x A),

where c : BxA-tAxBis the twist — so that we actually have

R>(y,x):=c*(R).

In writing, we often neglect the difference between R°{y,x) and R(x,y).
Bicategories of predicates could be axiomatized as a non-posetal version of Carboni

and Walters' [9] abstract 'bicategory of relations', with tensor, diagonals, and so on.
Duality (4.6) is definable in terms of adjunctions. To every such bicategory ~R one
could associate a regular fibration P : p -> C. In a suitable sense, this construction
is right adjoint to the building a bicategory of predicates from a regular fibration, as
we did above. But the direction from bicategories to fibrations is more complicated,
and it goes beyond the needs of this paper. We shall nevertheless outline it, since it
uncovers important correlations.

The base of the regular fibration P associated to a bicategory of predicates TL
would be the category C of maps in "R.. The fibres p(A) would be the hom-categories
TZ{I, A), where / is the unit of the tensor from TZ. This tensor becomes in C the
cartesian product, and provides the fibrewise products in p. The direct image of a
1-cell P <E p(A) along a map R € TZ(A, B) will be the 1-cell PR 6 p{B). The inverse
image of Q 6 p{B) will be the 1-cell QR' € P(A), where R* is the right adjoint of
R, which makes it into a map.

Maps. In [33], Lawvere has defined a map as a 1-cell R : A++B, such that R° : B++A
is its right adjoint. This just means that there are proofs (4.3) and (4.4), satisfying

(VR ; Re) = idR. (4.7)

The other adjunction equation (R°T];eR°) = idn- follows-by dualizing.
Actually, one could start from a more general definition of a map — as a 1-cell

with some right adjoint. By the same reasoning as in [42, section 3], it could then
be proved that, in an arbitrary bicategory of predicates, a right adjoint R* : B++A
of a 1-cell R : A-h+B must be isomorphic to R° : B+*A. This is a consequence of
the fact that, in arbitrary bicategory, the 2-cells a : R -> 5 and a* : R' -¥ S' must
be isomorphisms if R H R' and S H 5*, and if a and a* commute with the units
and the counits of these adjunctions [42, lemma 3.2]. In the bicategory of predicates,
each adjunction R H R* induces suitable 2-cella a : R -> (R*)° and a* : R* -> R°.
Constructing them runs parallel to the proof of [42, proposition 3.3]. The logical
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content of the construction is reflected in the following derivation.

T{x)—>3y.R(x,y)

'—>3y.R(x,v)AR°(y,x') t: 3x.R'(y ,x)AR(x,y

Rm (y' ,x')->3xy.R' (y' ,x)/\R(x,y)AR°(y,x') 3yx.R'(y' ,

a,': R-(y',x')—*R°(y',x')

We shall not chase these proofs here. We could proceed exactly as in [42] again, and
show that
PROPOSITION 4.2
For maps R(x,y) and S(x,y) in the bicategory of predicates, every proof a : R —¥ S
must be an isomorphism.

The upshot of this is that, in the bicategory of predicates 71, the maps modulo iso-
morphism form an ordinary category C. Its objects will be the same as the objects of
C and 7Z; and the hom-set C(A, B) will be the skeleton of the subcategory of 7l(A, B),
spanned by the maps. The proof of proposition 4.2 depends only on the fact that for
any 2-cell a : R -> S and proofs of single-valuedness en : R°R -* i and es • S°S -¥ i
the equation

({a0a) ; es) = eR

must hold. And this is an immediate consequence of lemma 2.3.
For general bicategories, proposition 4.2 may not be true. For instance, the multi-

plicative monoid N of natural numbers can be regarded as a bicategory with a single
0-cell, with the numbers as l-cells and the binary relations on m x n as the 2-cells
from m to n. It is easy to see that every 1-cell m is a map, with n : 1 -»• m x m and
e : m x m —> 1 relating the only element of 1 with all pairs (i, i ) G m x m. On the
other hand, there are obviously non-trivial 2-cells. This is a typical compact closed
category.

On the other hand, in bicategories of predicates, more is actually true than stated
in 4.2. In the next section, we shall see that any two proofs a, a' : R -» S must
be equal as soon as S is a map. This will follow from 5.3(1)^-2. The identification
of maps along isomorphisms is thus coherent, so that the subcategory of 7^(^4,5),
spanned by the maps, is equivalent with its skeleton C(A, B). This means that the
category of maps C is biequivalent with a subbicategory of "R., fully on the 2-cells.

5 Characterizing maps

In this section, we describe some conditions, intuitively or technically simpler than
(4.7), that can be equivalently imposed on a total, single-valued relation — to yield
a map. Let us begin with what seems to be the weakest sensible commutativity
condition that can be put on the proof of totality. It will turn out to be equivalent
to (4.7).

DEFINITION 5.1
A predicate R(x,y) is strongly total if there is a proof

i j :T(x)—* 3y.R(x, y)
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such that the opcartesian arrow av : R(x,y) —• 3y.R(x,y) factorizes through it as
a'= (T'W).

LEMMA 5.2

If R(x, y) is strongly total, then for every <j> there is a proof rj which makes the next
diagram commute.

AxAxB
dxB Axp

AxB AxA

(5.1)

PROOF. The desired proof TJ is the unique vertical factorisation of the arrow

(rj; 3y.fr dd) : T(x) -> 3y.R{x, y) -> 3y.i?(i, y) A /J(s, y) ^ RR°(x, x1)

through the opcartesian arrow ad. I

THEOREM 5.3

The following four conditions are equivalent for every predicate R{x,y) € p(A x B),

1. R is a map.
2. R(x,y) is total, single-valued and subterminal.
3. R(x,y) is total and single-valued, and 3y.R(x,y) is terminal.
4. .R(x,y) is strongly total and single-valued.

PROOF. 1=^2 From the explanations in section 4, it is clear that every map is total
and single-valued. It is subterminal, because R(x,y) A R{x,y) is a map as soon as
R(x, y) is a map. Let us postpone the proof of this fact for the next section. Assuming
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it, we can use proposition 4.2 to conclude, say, that the projection TT : R A R -* R is
an isomorphism. Lemma B.4 then tells that R is subterminal.

2=>3 If the projection TTR : R A R -> i? (either one of them) is an iso, then the proof

: 3y.R(x,y)AR(x,y)

is obviously an iso too. On the other hand, since R(x, y) is single-valued, the functor
3y preserves the product R(x,y)AR(x,y) and takes the projection ITR to the projection

3y-R{x,y) A 3y.R(x,y) —> 3y.R{x,y).

We defer the proof of this to the next section again. This preservation granted, we
conclude that the projection TT^.R = 3y.irR is an isomorphism. By B.4 again, the
predicate 3y.R(x,y) is thus subterminal.

On the other hand, R(x,y) is total, i.e. there is a section fj : T(i) —> 3y.i?(x,y).
The predicate 3y.R(x,y) is thus weakly terminal too. — But then it must be a
terminal object.

3^-4 3y.R(x,y) 2f T(z) means, of course, that the arrow rp : R(x,y) -*• T(i) must
be opcartesian. (Cf. A.2.) The proof f) : T(x) —y 3y.R(x,y), required by condition
4 is thus the unique vertical factorisation of o~p through rp .

4=»1 Here we must show that a strongly total, single-valued predicate R(x,y) must
be self-adjoint. Lemma C.I in the Appendix reduces this task to showing that the
2-cell (TJR ; Re), obtained from the proofs of the totality and the single-valuedness —
is a split epi. Dually, the 2-cell (R°T] ; eR°) = (TJR ; Re)0 will then be a split epi too.
Lemma C.I now says that these two split epis suffice for an adjunction R H R°.

A left splitting of (T)R; Re) comes about in the following diagram.
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R(x,y')AR(x',y')AR{x',y)
RAi

(I)

3y' .R(x,y')AR(x' ,y')AR(x' ,y

(H)

t
I

Re i
i
i

• RR°R{xty)

t

T),R

AxAxBxB AxBxB

dxdf vxB

AxB AxAxB AxB
dxB Axp'

(5.2)

For the strongly total, single-valued predicate R(x,y), we shall construct:

(i) a proof ipdxd' — which is left inverse of ((R A i);ap'*B\ and

(ii) proofs T] and •ydxB — such that face (J) commutes.

Condition (ii) will make diagram (5.2) commutative, since faces (I) and (II) commute
by definition (4.5) of composites yR and Re. Condition (i) will then imply that the
arrow {-ydxB-(rAxp) must be a left inverse of (qR ; Re).
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Construction (i). Consider the diagram:

v =v

AxAxBxB -»- AxBxB

dxd' p' xB

AxB
Axcf

-*- AxBxB
p'xB

BxB

(5.3)

By proposition A.8(2), face (I) is a pullback. Face (II) is a pullback because of lemma
A.4.

Since y'sy is subterminal (lemma 2.3), any two arrows from R(x,y) to y'sy must
be equal. The fact that (II) is a pullback implies that there is a unique arrow Adl

such that

= aAxd>

; TVP'XB) = {5Axd! ; ap'xB)

Since (I) is- a pullback, equation (5.5) induces a unique arrow <pd x d' with

; <rr>) =

; 7r»') = 6Axd>

(5.4)

(5.5)

(5.6)

(5.7)

From (5.4) and (5.6) follows

(5.8)
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Since ((A x <£); ( p x B ) j = ICIAXB, there is a unique arrow crpxB such that

; o>*B )=idR.

This arrow must be opcartesian, because both idR and aAxJI are. Postcomposing on
both sides of (5.8), we get

{<pdxdf ; aT> ; RAe ; <J*XB) = idR. (5.9)

Since by proposition A.8(2) holds

i:=(ap'xB;e) = • (R Ai) = (ar> • (R Ae)),

equation (5.9) teUs that ipdx<* satisfies requirement (i).

Construction (ii). To construct -fdxB, we need a diagram similar to (5.3).

R(x,y')AR{x' ,v'

(5.10)

The task is to construct a proof T; and then /ydxB, such that face {X) commutes.
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Let us denote by <f> the unique vertical arrow R(x, y) -+ R(x, y) A R(x, y) such that

(<fi; 0*** ) = &"*' ; „<).

Since R(x, y) is strongly total, lemma 5.2 yields a proof n such that the two external
paths around the upper part of (5.10) are equal.

Square (II) has thus been formed. Lemma A.4 implies that it is a pullback. Since
the two external paths in (5.10) are equal, and (I) commutes ( by A.8(2), it is even a
pullback) — a unique arrow j d x B is induced, making both (HI) and ($) commutative.

6 Lemmas

In this section, we fill the gaps left in the first two parts of theorem 5.3. The setting
is still the bicategory of predicates Ti.

LEMMA 6.1 (2=>3)
If the predicates R(x,y),R'(x,y) € p(A x B) are jointly single-valued — in the sense
that there is a proof f : R(x,y) A R'(x,y') —>• y=y' — then the functor 3y preserves
the product R(x,y) A R'{x,y).

PROOF. Given jointly single-valued predicates R and R', we must construct an iso-
morphism

3y.R{x,y) Aff{x,y) Z3y.R{x,y) *3y.R'(x,y), (6.1)

The Frobenius condition, on the other hand, implies that for any pair of predicates
R,R' € fp(A x B), there is an isomorphism

3yy'.R(x, y) A #(z , y') ^ 3y.R(x, y) A 3y.H'(x, y). (6.2)

For (6.1), it is thus sufficient to show that the proof a, defined on diagram (6.3) by
the requirement that face (I) commutes — is an isomorphism.
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3yy' .fl(x,y)Aif (x,y')Ajr=y'

AxBxB

Ax<f

(6.3)

Square (II), of course, commutes by the definition of 3yy'.(id,e).
We first claim that the arrow (•dA*d>; (id, i)) is opcartesian. By proposition 2.22,

there is indeed an opcartesian arrow <rAxdl from R(x,y) A R'(x,y) to R{x,y) A
R!(x,y') A ysy'. Proposition A.81, on the other hand, implies that every opcarte-
sian lifting of a monic must also be cartesian. Hence the following diagram.
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^ x j '
-*• H(x,v)A/l'(x,y')

aAXd' _

.Xxd'

(6.4)

Since the inverse images preserve the fibrewise products, hence the pairing the arrow
(̂ 4 x d')'(id,i) is in fact the pair

(id, (A x d'ye) : RAS — ^ A 5 A T ,

clearly an iso. The arrow (•dAxd>; (id, i)) is thus isomorphic to an opcartesian arrow
— thus opcartesian itself.

The arrow (tfAxd>; (id,i);aq) is thus an opcartesian lifting of p = ((A x <f);g)
— just Uke op is. As an arrow between two opcartesian liftings of the same arrow,
(Q ; 3yy'.(id,£)) must be an iso — and 3yy'.(id,i) is a split epi. But 3yy'.(id,i) is
surely a split monic, because (id, e) is. So 3yy'.(id,e) is an iso. Since its composition
with a is an iso too, a must be an iso.

A straightforward application of proposition A.8(2) now shows that 3y takes pro-
jections to projections. I

LEMMA 6.2 (1=>2)
If R(x,y) is a map, then R2(x,y) := R(x,y) AR(x,y) must be a map too.

PROOF. Given the proofs 77 and e, which make R(x,y) a map, we must define

772 : x=x' —• 3y.R2(x, y) A R2(x', y) and
e2 : 3x.R*(x,y')AR2(x,y)—ty'sy,

making R2(x,y) into a map. So let the unit 772 be the composite

:= ((77,77); K) :X=X' —> (3y.R(x,y) A

(6.5)

\ 2

where the isomorphism /c : (3y.R(x,y) A R(x',y)j —> 3y.R2(x,y) A R3(x',y) is

derived from lemma 6.1. The counit e%, on the other hand, can be obtained in the
opcartesian-vertical factorisation of the 2-cell

e2 :=(/>;(£ A £ - ) ; 7 T ) : J R W ) A i?2(z,y) (R(x,y') A R(x,y))2

(6-6)
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The arrow p := (TTI , n3,7r2,7r4) is the 'middle two exchange', and ir is just a projection.
Both these arrows are isomorphisms, the latter by lemmas 2.3 and B.4.

The composite (TftR2;R2e2) can be obtained using the universal property of op-
cartesian arrows on the following diagram.

x=x'/\R*(x R2(x,y)

AxAxBxB AxBxB

oxB

AxAxB AxB
Axp'

(6.7)

The composite (rjR; Re) appears, of course, in a diagram which can be obtained
from (6.7) by dropping the '2' everywhere. We can thus put this diagram for R2

on top of the diagram for R, and connect each pair of the corresponding objects by
the arrows derived from, say, the first projection IT : R2(x,y) -> R(x,y). The lateral
squares of the prism obtained in this way will all be commutative: the ones built
from the opcartesian arrows and the projections will commute as special cases of
(A.I); those built by projecting T^ A R2 to TJ A R and R2 A ej to R A i will commute
by the definitions of T^ and f2, respectively. (The latter, in fact, already by lemma
2.3.) Chasing this prism and using the universal property of opcartesian arrows, we
conclude that the square
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R*() mR R*(R°)3R*() fl3()

R(x,y) >• RR°R(x,y) *- R(x,y)
i)R Re

(6.8)

must commute. The assumption that R -\ R° means that the composite at the bottom
reduces to the identity. Hence

(mR2 ; R2£2 ;«•) = n.

Another equation like this is obtained by projecting (6.7) on the corresponding di-
agram for R once again, but this time using everywhere the second projection ir1 :
R2 -¥ R instead of w. Putting these two equations together, we get

; R2e2) =
(6.9)

7 Applications

Using theorem 5.3, we can now analyze the correlation between the maps relative to
a regular fibration P : p -> C and its functions, viz the arrows of C. The terms of
reference are similar as in [42]. Following Lawvere [33], we say that an object B € C
is Cauchy complete (a P-sheaf) if for every map R(x,y) £ fp(A x B) there is a unique
arrow / : A -> B such that (f(x)=y) 2i R(x,y). The fibration P itself is function
comprehensive (subcanonicai) if every object of C is Cauchy complete.

Examples. Recall from 3.4 that Cod : F/C -»• C is the free regular fibration generated
by a fibration F : V ->• C, where C has the finite limits, while V has the finite fibrewise
products. Direct calculations show that a binary predicate (R, r) € F/C — where r
is thus a pair (a, b) : F(R) -+ Ax B — will be

• total — if and only if a : F(R) -> A has a left inverse j : A -»• f{R), such that
there is a vertical arrow T^ —¥ j'(R) in V;

• single-valued — if and only if (h; a) = (k; a) implies (h; b) = (k; b), for all h, k, and
• subterminal — if and only if R is subterminal in the fibre T>FR, while r is a monic

inC.

According to 5.3, these three conditions characterize maps. Recombining them, one
concludes that (R, r) £ F/C will be a map if and only if a is iso and R is terminal
in I?Ffl- In other words, the maps in F/C are (isomorphic to the objects) in the form
(T^, (id, / ) : A -t A x B). The free regular fibrations are thus function comprehen-
sive.
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The fibration M : Mod —• Set, described in 3.3, is function comprehensive too.
Namely, the subterminal objects in a fibre Mod^xs are just the subsets of A x B,
and the maps boil down to actual functions in Set. On the other hand, the regular
fibration corresponding to the Realizability Tripos is posetal, so that all the predicates
in it are subterminal. Although the fibration M may seem richer, the Realizability
Tripos defines more maps. It is thus very far from being function comprehensive: its
category of maps is significantly larger then the base category Set.

Given a site (C, J), an object B € C is a J-sheaf if and only if it is Cauchy complete
with respect to the regular fibration ftj : fij -* C, defined in 3.2. This is immediate
from the internal definition of a sheaf. The fibration fij is thus function comprehensive
if and only if the site (C,J) is subcanonical. And this is known [1, A.19] to be
equivalent with the requirement that J-covers are jointly regular epi.

Given a stable factorisation (£,M) in C, one can fabricate a topology on C by
saying that every sieve containing an £ -arrow is a cover. In this way, the results of
[42], proved in the bicategory of predicates (i.e. in the calculus of relations) induced
by the fibration Cod : M./C —¥ C from 3.1 — could also be derived using sites and the
posetal fibration from 3.2.

Site representation. In fact, every regular fibration P : p -> C over a left exact
category C induces a topology J : J - t C. The J-covers of A £ C are the sieves
collected in

J/i := [U C C/A | there is e £ U with (3z.e(z)=x) S< T ( i ) | . (7.1)

As outlined in 3.2, the fibred category fij, associated with the site (C, J), will consist
of the j-closed sieves, where the closure of a sieve V C C/B is

j(V) = {/ 6 C/B | there is e with {3z.e{z)sx) a T(ar) and (e;/) € V"}. (7.2)

Now we can define the site representation of the regular fibration P : p -*• C in
fjj : Slj -+ C. It is realized by the functor (-) : p -> fij, which assigns to each
predicate Q{y) € p(B) the sieve

Q(y) ~ i {/ € C/B | T(x) -+ <?(/(z))} . (7.3)

This is a product-preserving cartesian functor from P to ftj. In general, though, it is
not opcartesian. So it may not preserve maps. When it does, the Cauchy complete
objects with respect to P are J-sheaves.

PROPOSITION 7.1
The regular fibration P : p -+ C is function comprehensive if and only if

• its site representation preserves maps, and
• for every e € C, whenever (3z.e(z)=x) Si T(z), then e must be a regular epi.

PROOF. (^-) First suppose that P is function comprehensive. To show that the site
representation preserves the single-valuedness, it suffices to prove that it preserves
the equality, i.e. that

feC/B}).
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Since TB Q d* (j/'=y), the inclusion d\ (TB) Q y'^V holds by the definition of d\. The
other way around, suppose (h',h) 6 i/sy- By (7.3) and (7.2), this means that there is
a covering arrow e, such that T(x) —>• h'(e(z))sh(e(z)). From this proof, we derive
/i'(e(z))=y —)• h(e(z))=y. Since both predicates here are maps, the proof connecting
them must be an isomorphism, by proposition 4.2. Since P is function comprehensive,
it follows that (e; h') = (e; h) must hold. Hence (h1, h) € j{</, / ) | / G C/B}.

The site representation thus preserves equality. Since it always preserves the fibre-
wise products, it will take a proof i of the single-valuedness of R(x, y) into a proof
that R(x, y) is single-valued.

If R(x,y) € p(A x B) is, furthermore, a map, it must be (isomorphic to one) in
the form f(x)=y. For arbitrary a e C/A, there is thus b := (a; / ) € C/B such that
R{a(z),b(z)) s T(z). This implies that the sieve

p, (fl) = j {a G C/A | (a, 6) € S for some b G C/5}

is all of C/A — so that i? satisfies condition 3 of theorem 5.3.
To see that 3z.e(z)sx implies that e : D —¥ A is a regular epi, take an arbitrary

arrow g : D ->• B, such that (h;e) = (k;e) implies (h;g) = (k;g), for all h,k. We
claim that

R{x,y) := 3z.e(z)=x A 5(z)sy

is a map. The assumption about g implies that R is single-valued. (Exercise. Form a
pullback C of B x (e, g) and (g, e) x B; show that the obtained arrow c : C -+ BxAxB
must be in the form c = (6, a, 6). But R°R is the direct image of Tc along (6, £>).) On
the other hand, the assumption 3z.e(z)=x implies that R(x,y) is total in the strong
sense:

3y.R{x,y) = 3yz.e(z)=x A g(z)=y
2 3z.e(z)=xA3y.g{z)=y
a 3z.e(z)=xAT(z)
S T(x).

The assumption that P is function comprehensive now yields a unique f : A —¥ B such
that R(x,y) S (f(x)=y). Applying the substitutivity and the uniqueness part of the
function comprehension, we can derive from the definition of R(x,y) that (e; / ) = g.
(•*=) If the site representation preserves maps, an object B G C is P-Cauchy complete
whenever it is fij-Cauchy complete — i.e., whenever it is a J-sheaf. And we know
that every object of C is a J-sheaf if and only if every J-cover is jointly regular epi.
The second assumption implies that this must be the case here, since every J-cover
by definition contains an arrow e such that (3z.e(z)sx) 2 T(x). I

The two conditions from the preceding proposition are independent. For instance,
the site representation (—) of any factorisation system (£, M) is an opcartesian func-
tor, and always preserves maps. But according to [42], the regular fibration induced
by (5, M) is function comprehensive if and only if all £-arrows are regular epi. And
they need not always be. On the other hand, a set-theoretical function e is surjective
whenever the Realizability Tripos says so — i.e., whenever (3z.e(z)sx) 2 T(i). But
this tripos is far from being function comprehensive. Hence, its site representation
cannot preserve maps.
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In fact, the second condition echoes (and subsumes) the standard characterisation
of subcanonicity for sites [1, prop. 1.4.3], as well as some more recent results about
factorisations [22, 42]. For sites and factorisations, the first condition is satisfied auto-
matically. The Effective Topos shows how interesting can be those 'slightly distorted'
situations when it is not satisfied.

At any rate, the upshot of the function comprehension of P : p —¥ C is that it
provides for sound reasoning about C in p . It ensures that an arrow u £ C is a
regular epi as soon as it is P-surjective — in the sense that 3x.u(x)sy is provable in
p . The converse does not hold: the function comprehension does not guarantee that
every regular epi is P-surjective, as witnessed by any factorisation where the class £
is strictly contained in the regular epis. On the other hand, whenever u is monk,
it must be P-injective: a proof u(x)sy A u(i')=y —> i s x ' exists even without the
function comprehension. The uniqueness part of the function comprehension (i.e.,
each map induces at most one arrow) suffices for proving that a P-injective arrow
must be monic.

In bicategorical terms, a map R € p(A x B) is surjective in the above sense if and
only if the counit e : R°R -> %B of the adjunction R H R° is iso; and R is injective if
and only if the unit r/: XA —• RR° is iso. The former equivalence can be demonstrated
using a diagram dual to (5.1). For the latter, notice that both R(x,y) A R{x1 ,y) and
xsx' are subterminal; and then use lemma 6.2 to show that RR° must be subterminal
too.

8 Future work

Instead of speculating about great promises of categorical proof theory, let us try to
touch upon a vanishing point of the presented material. In [7, 45], the Effective Topos
is obtained by certain universal constructions. Now it turns out that the original
construction of p-sets [20] has a universal property too. The presented analysis of
maps suggests that a non-posetal version of p-sets might be feasible and meaningful.

First of all, every regular fibration P :^p —> C has a function comprehensive comple-
tion Pb : pf -> Cb, defined as follows. The base Cb is the category of maps relative to P.
While Cb has the same objects as C, the total category pP of the completion will have
the same objects as p . The arrows from P{x) 6 p{A) to Q(y) G p{B) will be pairs
(R(x,y),g), where R(x,y) e p(A x B) is a map, and Q : P(x) —> 3y.R(x,y) A Q(y)
is a proof in p(A). On the objects, the functor Pb is the same as P; and it projects
each arrow (R, g) to the map R. The reader may wish to check that the inverse and
the direct images are respectively provided by:

R'(Q) := 3y.R(x,y) A Q(y) and (8.1)

R{(P) := 3x.P(x)AR(x,y). (8.2)

Clearly, P1" is function comprehensive. Using theorem 5.3, it is not hard to show
that a regular fibration is function comprehensive if and only if it is equivalent to its
own completion. The construction (-)b is left (bi)adjoint to the inclusion of function
comprehensive fibrations in the regular ones.

The Effective Topos is, of course, much bigger than the function comprehensive
completion of the Realizability Tripos. To get a step closer to what it actually is, let
us mention another free construction, which can be applied to any fibration P : p —»• C



186 Maps II: Chasing Diagrams in Categorical Proof Theory

with finite products in C and in all fibres. Let us call such fibrations left exact.
An equivalence relation with respect to a left exact fibration P is a predicate

S(x,x') 6 p(A x A), which is reflexive, symmetric and transitive in the sense of
p. We say that this equivalence relation is effective if there are an object B and an
arrow / : A -¥ B in C such that S{x,x') S ( / ( I ) = / ( I ' ) ) - The fibration P : p -*• C is
said to be effective itself if all its equivalence relations are. This terminology is con-
sistent with the standard categorical usage: an internal equivalence relation in a left
exact category C is just a reflexive, symmetric and transitive predicate with respect
to the canonical fibration Cod : Mon/C —¥ C; the notions of the effectiveness coincide.
Recalling (from 3.1) that the notions of regularity coincide too, and observing that C
is an exact category [1] if and only if this fibration is regular and effective, we define
exact fibrations as those which are regular and effective.

The definition of the effective completion P" : p " -¥ C of a left exact fibration
P : p -¥ C can be lifted from [8]. We only describe the base C . Its objects are thus the
equivalence relations with respect to P. To describe morphisms from S(x, x') 6 p(A x
A) to T(y, y') 6 p{B x B), consider the arrows / : A -¥ B in C, for which there is a
proof S(x,x') —¥ T(f(x),f(x')). A morphism 5 ->• T in C is the equivalence class
of such arrows A -¥ B modulo the relation which identifies / and g if T (f(x),g(x))
is provable in p(A). Applying this construction to the basic fibration Cod : C/C —¥ C
yields the exact completion of C, from [8]. For general left exact fibrations, however,
it does not give the regularity for free. But it does produce exact fibrations from
regular fibrations.

Note, finally, that the function comprehensive completion leaves the objects un-
changed, and only adds more arrows (the maps); while the exact completion, in a
sense, adds more objects (the quotients) and changes the arrows as little as possible.
As a synthesis of the two, the p-set construction, adds more of everything. The
objects of the category & of p-sets derived from a regular fibration P : p -> C will
be the partial equivalence relations, i.e. the p-predicates which are symmetric and
transitive. The arrows will be suitable maps (20, 2.4].

An analysis based on 5.3 strongly suggests that the fibration P* : p^ -¥ £*, obtained
by proceeding in this way, will be the comprehensive completion of the regular fibration
P : p -» C. A fibration P : p ->• C is said to be comprehensive [32, 38, III.3] if the
terminal objects functor T : C -> p, right adjoint to P, has a further right adjoint
{i | —} : p -¥ C, assigning to each predicate P(x) its extent {x\P(x)}. A fibrewise
cartesian closed fibration is comprehensive if and only if it is locally small, in the
sense of [3]. If we begin with a globally small such fibration (i.e., all the objects
of its total category are inverse images of a generic one, as in a tripos), the p-set
construction will lead to a small fibred category [op. cit.}. This is where the object
of truth values in the Effective Topos comes from. On the other hand, since we
are in the-realm of regular fibrations, the obtained small category will always have
the small (fibrational) coproducts. Thus, the p-set construction will transform a
globally small (non-posetal) regular fibration into a small (nondegenerate) category
with small coproducts. By [41], it will also small products too. Such (co)completeness
phenomena in small categories are extremely rare and exciting.

In dealing with the non-posetal p-set construction, our technical results will prob-
ably be very helpful: maps as adjunctions become completely unmanageable here. It
is, for instance, quite complicated to prove directly that the comprehensive comple-
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tion of the fibration M : Mod -> Set from 3.3 just displays modest sets in a familiar
setting: as a small complete and cocomplete category fibred over encoded sets [41]
(i.e. assemblies [12, 2.153]). A typical result of the general p-set construction, this
setting can be thought of as a universe with strongly constructivist logic: a 'topos' in
which the object of truth values is a genuine category, rather than poset.

Appendix

A Fibrations
The main references about fibrations are still [15] and [14]. Here we survey the terminology and
some basic facts, following [38].

Let P : p -»• C be a functor. We say that an object or arrow X 6 p is over P(X) £ C. A fibre of
P over A € C is the subcategory fp(A) C p , consisting of all the objects over A and all the arrows
over id A- The arrows over identities are called vertical.

A p-arrow •& : Q1 —* Q is said to be cartesian with respect to P if for every ip : P -f Q such that
P(ip) = P(i?) there is a unique vertical arrow ip' : P -> Q' with <p = (</;0).

The functor P is a fibration if the vertical and the cartesian arrows that it induces form a factori-
sation system. In other words,

DEFINITION A.I
A functor P : p -*• C is a fibration if for every arrow / : A —• B in C, and every Q € p (B) there
is a cartesian arrow tf^ : f'(Q) —f Q over / , and if the cartesian arrows are moreover closed under
composition.

The object f'(Q) — determined by this definition up to an isomorphism — is the inverse image
of Q along / . For instance, let C be the category Set of sets and functions, and let the objects of p
be pairs (A, P), where A is a set and P C A. Let the arrows from (A, P) to (B, Q) be the functions
f : A -¥ B which map P to Q. P is the projection. Clearly fp(A) is now the lattice of subsets
of A, and /* : fp(B) -* p(-4) takes each Q C B to its inverse image in the usual sense. These
data determine a functor V : Setop —• CAT, which is the corresponding indexed category. But take
another example: let p be the arrow category C/C of a finitely complete C and let P : C/C ->• C be
the codomain functor. The inverse images are now obtained as pullbacks. To extract the functors
/" : p ( B ) -> p(i4) for the arrow part of the corresponding indexed category V : Cp -*• CAT, one
in principle needs the axiom of choice. The same holds for any fibration P : p —> C: the arrow part
of the corresponding indexed category V : C°v -> CAT requires choice. Moreover, the couniversal
property of the inverse images ensures a natural isomorphism g' f 2! (/;?)* — but not the strict
equality. An indexed category is generally not a functor, but only a pjeudofunctor: it preserves the
composition only up to a canonical isomorphism.

Finitary structures are lifted from ordinary category theory to fibrations in fibrewiie way: each
fibre must possess the structure and this structure must be stable under the inverse images. For
instance, we say that the fibred category p has binary fibrewise products if each fibre p(f l ) has
products Q A Q', and moreover

holds for every / : A -+ B and for any choice of the inverse images. (Of course, the projections and
diagonals must be preserved as well.) We say that p has fibrewise terminal objects if each p(B)
has terminal object Tg, and /*(Ta) is terminal in p(i4). Of course, if p has fibrewise terminal
objects and binary products, then it has all finite fibrewise products.

Now we list some easy lemmas about the fibrewise structure, used throughout the paper. The
proofs can be found in [38, fl.2.2].

LEMMA A.2
Suppose that p has fibrewise terminal objects. For every P 6 P(-4) and each / : A —• B in C, there
is a unique arrow
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where rp is the unique vertical arrow from P to T^.

LEMMA A.3
Suppose fc) has fibrewise binary products. For each pair of arrows xpf : P —t- Q and
there is a unique arrow

: P -f Q

(,/,, f (Q) A / ' (Q) —• Q A Q

hold, where v and 7f are the verticalsuch that the equations I (i>, i>); * J = ip and I {ip, i>); i\ —

projections.

LEMMA A.4

Let a commutative square S in a fibred category <p have two opposite sides cartesian. Then S is a
pullback in %D if and only if the square P(S) is a pullback C. In particular, a commutative square
consisting of two opposite vertical and two opposite cartesian arrows is always a pullback.

In an indexed category V : Cp —> CAT, the existential quantification and the C-small coproducts
are represented by the left adjoints of the functors V(f) : V(B) -+ V{A). For a fibration P : p -+ C,
the inverse image functors /* : fp(B) —y fp(A) will turn out to have left adjoints if and only if the
opposite functor Pop : p ° p -K COJ> is a fibration too.

DEFINITION A.5

A functor P : p -)• C is a Infiltration if both P and POJ> are fibrations.

The cartesian arrows with respect to the fibration P°p : %yp —• Cp can be characterized as
arrows of £? by a property dual to cartesianness. They are called opcartesian arrows with respect
to the opfibration P : £? -> C. An opcartesian lifting of / 6 C(A, B) is generically denoted by
a1 : P -> h(P)- The induced direct image functor /i : p(A) -* p{B) is left adjoint to /*.

DEFINITION A.6 (Lawvere)
A bifibration P : fa) —• C satisfies the Beck-Chevalley condition if for every pullback square (I; t) =
(t; s) in C and for every object R over the domain of a, the following canonical arrow (induced by
the universal property of direct images) is an iso:

.(«•(*)) —•«•(.,(«)).

DEFINITION A.7 (Lawvere)
A bifibration P : £? —y C with binary fibrewise products satisfies the Frobcnius condition if for every
arrow / : A —• B in C and objects P £ fp(A) and Q 6 ft{B), the following canonical arrow is an
iso:

Since they are defined using the universal properties, the canonical arrows in both preceding
definitions form natural families. In the latter case, for instance, this means that for every arrow
Q : Q —¥ Q' in fi(B) and any P £ fp(A), the following square will commute.

PA/-(C) /|(P)Aa

(A.I)
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PROPOSITION A.8
1. In any bifibration, the Beck-Chevalley condition is satisfied if and only if the opcartesian arrows

are stable under pullbacks along the cartesian arrows.

, - . < * ,

(A.2)

2. In any bifibration with fibrewise products, the Frobenius condition is satisfied if and only if the
opcartesian arrows are stable under pullbacks along the vertical projections.

r
(A.3)

A morphiam between fibrations P' : <@/ —• C and P : £? —• C is a cartesian functor F : <£? —• £),
preserving the cartesian arrows, and with P7 = FP. An opcartesian functor preserves, of course, the
opcartesian arrows.

B Subterminal objects
DEFINITION B.I
An object R is subterminal if there is at most one arrow X —• R from any object X.

REMARK B.2
An object R is said to be weakly terminal if for every X there is at least one arrow X -¥ R. Thus
an object is terminal if and only if it is subterminal and weakly terminal.

LEMMA B.3
In a category with a terminal object T, an object R is subterminal if and only if it is a subobject of
the terminal object.

LEMMA B.4
In a category with binary products P A Q the following conditions are equivalent.
1. A is subterminal.
2. The projections p,p' : R A R —• R are equal: p — p1.
3. The first (equivaJently, the second) projection p : R A R -)• R \& &n isomorphism.
4. The diagonal d : R -+ R A R is an isomorphism.

COROLLARY B.5
In a regular fibration, every inverse image of a subterminal object is subtenninal.
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C A lemma on adjunctions

Here we prove a general lemma on adjunctions, used in the proof of theorem 5.3. It is formulated in
an arbitrary bicategory, but it can be understood in the framework of ordinary category theory, where
1-cells are functors and 2-cells are natural transformations. This is possible because the 'horizontal'
composition is inde«d functorial in both arguments. A composite T/T0' of 2-cells

B'.

(C.I)

must therefore be equal both to (^H');(Ki>') and to (Hi>');(t(/K'). The equality of these two is
sometimes called the Godement law. The diagram

HH'

H4>'\

HK'

KH'

KK>

(C.2)

thus commutes, and the 2-cells tji and ip' appear to be natural

LEMMA C.I
Let V. be a,bicategory. Suppose we are given 0-cella A and B, l-cells F : Ai-tB and G : B\-*A, and
2-cells 77 : idA -t- FG and e : GF ->• idB. Then F is left adjoint to G if and only if the 2-cells

a := {r)F;F£) : F -*• FGF -»• F
0 := (CTJ;JG) : G -)• GFG -+ G

(C.3)

are both split epi (or both split monic).

PROOF. The 'only if'-direction is trivial: a : F -> F and P : G —• G are then identities.
Suppose, towards a proof of the 'if'-direction, that a and /3 are split epis. Let a' and ff be their

respective left inverses. We claim that the 2-cells

1 • = • idA —f FG
: GF —• idB

(C.4)

satisfy the adjunction equations, making F ^ G. The first one is obvious:

tG

OFQ

(C.5)
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The triangle commutes by definition, the square by the naturality. The lower path is the identity by
the definitions of £ and ff'. Hence Grj;eG = id.

The second adjunction equation follows from a similar diagram.

*- FQF
F7

FGa' FP'F
Ft

-*• FQF

(C.6)

The triangle and the square commute for the same reasons as above; the lower path is clearly identity
again. We claim, furthermore, that the equation

(FGa' • Fs) = ; Fs) (C.7)

holds. It implies that (C.6) is a commutative diagram. Hence (t)F; Ft) = td.
To prove (C.7), first consider the following diagram:

FQF
F0F

FGa

FCTJF

FKGF
FGFGF *- FGF

FOF,

FOF • -»- F

(C.8)

The smaller square commutes by the naturality again. The rest — by definitions of a and /9. Now
we know that the lower square in (C.9) commutes.
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FCF

F0'F
FCa

(C.9)

The upper square is commutative by the naturality. The two external paths yield (C.7). I
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