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We study three comonads derived from the comma construction. The induced coalgebras

correspond to the three concepts displayed in the title of the paper. The comonad that

yields the ∗-autonomous categories is, in essence, the Chu construction, which has

recently awaken much interest in computer science. We describe its couniversal property.

It is right adjoint to the inclusion of ∗-autonomous categories among autonomous

categories, with lax structure-preserving morphisms. Moreover, this inclusion turns out

to be comonadic: ∗-autonomous categories are exactly the Chu-coalgebras.

1. Introduction

The Chu construction was devised by Michael Barr and his student Po-Hsiang Chu as

means to show that there are plenty of ∗-autonomous categories. It first appeared in

Chu’s master’s thesis and in the appendix of Barr’s book (Barr 1979). It differed in

spirit from the methods pursued in the rest of the book, and looked a bit mysterious

and ad hoc. Strangely enough, starting from a completely different background, Hyland

and his student de Paiva (de Paiva 1989) arrived at a very similar structure, which they

called “Dialectica” categories. While Barr and Chu worked with Banach spaces and Hopf

algebras, Hyland and de Paiva were motivated by Gödel’s “Dialectica” interpretation of

constructive logic.

The importance of all this grew considerably when Seely (Seely 1989) noticed that

∗-autonomous categories provide models for linear logic. Barr (Barr 1990; Barr 1991)

picked up the Chu construction as a general method of providing such models. He pro-

posed a modificationwhich, under certain conditions, guarantees not only the ∗-autonomous

structure, but also linear exponentials. This modification and its advantages will be stud-

ied in part II of this paper.

The linear logic connection brought the Chu and the Dialectica categories on the scene

of computer science and various computational interpretations started appearing (Lafont

and Streicher 1991; Brown and Gurr 1991). The Chu spaces, obtained by applying the Chu

construction to the category of sets, have been proposed by Pratt and his collaborators

as a foundational structure for concurrency theory, capturing the duality of states and

† This work was partly supported under CEC grant ERBCHBGCT930496 and under ONR grant
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events (Gupta and Pratt 1993; Pratt 1993a; Pratt 1993b; Pratt 1994a; Pratt 1994b;

Gupta 1994; Glabbeek and Plotkin 1995; Pratt 1995). They were shown to be remarkably

rich and versatile, accomodating concrete faithful functors from arbitrary small concrete

categories. However, no categorical universal property (Mac Lane 1971, ch. III) of the Chu

construction has been established so far, no explanation in the style “it is the smallest

(or the largest) category such that. . .”. So there may still be grounds for arguing that it

is an ad hoc structure, accidentally rich.

The purpose of the present paper is to establish a couniversal property of the Chu

construction. Given an autonomous (i.e., closed symmetric monoidal) category with a

chosen object, it produces a cofree one, such that the chosen object induces a duality.

And an autonomous category with a dualizing object is, of course, ∗-autonomous.

While based on a rather trivial observation that the original presentation of the Chu

construction (Chu 1979; Barr 1991) conceals a comma category, this result turns out to

be not just technically demanding, but also conceptually evasive. (An earlier version led

to a complaint that even if the Chu construction is not ad hoc, the category in which

it is couniversal, still is.) In order to uncover the source and the real meaning of this

couniversality, we are led to start two steps away from the Chu construction. In section

2, we describe a very general comonad, derived from the comma construction, and show

how it extracts, among arbitrary functors, exactly the equivalences as coalgebras. The

modifications needed for dealing with the contravariant functors are discussed in section

3. The comonad described there transforms arbitrary self-adjoint functors into a dualities.

By adding the autonomous structure, we derive in section 4 a comonad on the 2-category

of autonomous categories, each with a self-adjunction induced by a chosen object ⊥. This

is the Chu comonad. Its coalgebras are the ∗-autonomous categories, its homomorphisms

— the structure preserving functors. The forgetful functor from these coalgebras turns

out to be essentially an inclusion: each autonomous category with ⊥ can be a coalgebra in

at most one way, up to isomorphism. Being a Chu-coalgebra is thus a property of a given

autonomous category with ⊥, rather than additional structure. On the other hand, for

any autonomous category with ⊥, the Chu construction yields the cofree ∗-autonomous

one. This is its couniversal property — originating from the couniversal property of the

comma consturction.

But Barr and Chu did not set up their construction as a comma categories. Abstracting

from the technique of dual pairs in functional analysis (Kelley, Nanmioka et al. 1963,

ch. 5), they defined the objects of their category to be the triples 〈A,B,A ⊗ B
φ
→⊥〉,

where A and B are arbitrary objects of an autonomous category V, and ⊥ is a fixed

object, chosen to become dualizing. A morphism from 〈A,B, φ〉 to 〈C,D, γ〉 was defined

as a pair 〈u : A→ C,B ← D : v〉 of V-arrows, making the square

A⊗D A⊗B

C ⊗D ⊥

u⊗D

��

A⊗v //

φ

��

γ
//

(1)
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commute. This is the setting in which the autonomous structure of a Chu category was

originally discovered.

The starting point of the present paper is the fact that the category described by Chu

is isomorphic to the comma category V/⊥⊥, induced by the homming functor

⊥⊥ : Vop −→ V : A 7−→ A⊥ = A −◦⊥ . (2)

By definition, the objects of V/⊥⊥ (i.e. IdV/⊥⊥, sometimes written IdV ↓ ⊥⊥ (MacLane

1971, II.6)) are the triples 〈A,A
f
→ B⊥, B〉. Clearly, each such triple corresponds by

transposition to unique Chu’s triple 〈A,B,A ⊗ B
φ
→⊥〉. Furthermore, a V/⊥⊥-morphism

from 〈A, f, B〉 to 〈C, g,D〉 is a pair 〈u : A→ C,B ← D : v〉, making the square

A B⊥

C D⊥

u

��

f //

v⊥

��

g
//

(3)

commute. But (1) commutes if and only if (3) commutes. The morphisms thus coincide,

and the categories are isomorphic. Presenting the Chu construction on the background

of the comma construction opens up the road to its couniversal property.

The focus of the present paper is thus the couniversality of the comma construction.

While it was formally introduced only in the early sixties, at the beginning of Lawvere’s

thesis (Lawvere 1963), the germ of the comma construction can actually be found already

in the treatment of dual pairs in Mackey’s 1942 thesis (Mackey 1945) — which is the

remote source of the Chu construction too.

Finally, let us mention that the Dialectica categories (de Paiva 1989; Brown and Gurr

1991) can also be reduced to the comma construction, but poset-enriched. And this

enriched version can be derived from arrow 2-categories, which will be descussed in the

following section.

2. Comma comonad

Let C be any category and C
→

= C/C the category of its arrows. The embedding I : C → C
→
,

taking each object of C to the identity on it, has both adjoints: the domain and the

codomain functors. Hence a monad and a comonad on C
→
, both idempotent. It is easy to

see that the algebra, as well as the coalgebra structure on an arrow v ∈ C
→

boils down to

the inverse arrow v−1 . The category of algebras, as well as the category of coalgebras,

is isomorphic to the subcategory of C
→

spanned by the isomorphisms. But this is the

essential image of the embedding I : C → C
→

— which is thus monadic and comonadic.

The story gets more interesting when C is a 2-category. The arrow 2-category C
→

has,

of course, the arrows V : V′ → V′′, U : U ′ → U ′′ of C as objects. A C
→
-arrow from V to
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U will now be a square with a 2-cell

V′ U ′

V′′ U ′′

V

��

F ′
//

U

��

ϕ

~~}
}

}

}

}

}

}

F ′
//

(4)

— that is, a triple F = 〈F ′, ϕ, F ′′〉. Its composite with a morphism E = 〈E ′, ǫ, E′′〉 from

U to T will be

E · F = 〈E′F ′, E′′ϕ ◦ ǫF ′, E′′F ′′〉 (5)

On the other hand, a 2-cell λ : F → G in C
→
, where G = 〈G′, γ, G′′〉 is another morphism

from V to U , will be a pair 〈λ′, λ′′〉 of 2-cells from C, preserving ϕ and γ, in the sense

that the following square commutes.

UF ′ UG′

F ′′V G′′V

ϕ

��

Uλ′
//

γ

��

λ′′V
//

(6)

The composition of 2-cells of C
→

is componentwise, i.e. inherited from C.

The described embedding I : C → C
→

obviously extends to these 2-cells. How about its

adjoints? To avoid unnecessary abstraction, let us restrict to the 2-category C = CAT of

categories, functors and natural transformations. The right adjoint D : CAT
→
→ CAT of

I is now induced by the one-sided comma construction. This is the “glorified” domain

functor. The left adjoint, corresponding to the codomain functor, is less familiar, but can

be spelled out as an exercise.

Anyway, the right adjoint D takes each functor V : V′ → V′′ to the comma category

DV = V/V′′. The objects of DV are thus the triples 〈X′, x, X′′〉, while the arrows are

pairs 〈u′, u′′〉, which make the square below commutative.

〈X′, V X′ X′′, X′′〉

〈Y ′, V Y ′ Y ′′, Y ′′〉

u′

��

V u′

��

x //

u′′

��

u′′

��

y
//

(7)

Note that V/V′′ is isomorphic to V ′ if and only if V′′ is a discrete category, i.e. set.

Restricted to sets and functions, D thus boils down to the domain functor.

Given a CAT
→
-morphism F : V → U , the construction D induces a functor DF : DV →

DU , which takes each object 〈X′, V X′ x
→ X′′, X′′〉 of V/V′′ to

〈F ′X′, UF ′X′ ϕ
−→ F ′′V X′ F ′′x

−→ F ′′X′′, F ′′X′′〉, (8)
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in U/U ′′, while an arrow 〈u′, u′′〉 goes to 〈F ′u′, F ′′u′′〉. Finally, the image Dλ : DF → DG

of a 2-cell λ : F → G in CAT
→

is obtained simply by “changing the perspective”: condition

(6) ensures that the pair 〈λ′, λ′′〉 forms a natural family of U/U ′′-morphisms, which can

be construed as a transformation DF → DG : DV → DU .

The couniversal property of the comma construction now induces an equivalence (even

isomorphism) of hom-categories

CAT
→

(IA, V ) ≃ CAT (A,DV ) , (9)

natural in A and V . This is the adjunction I ⊣ D. Hence the comonad P = I ·D on CAT
→
,

with the data

V PV P2V

V′ V/V′′ V/V′′
→

V′′ V/V′′ V/V′′
→

eVoo dV //

V

��

Id

��

E′
oo I //

Id

��

ǫ

?

?

?

?

?

?

?

��

id

||y
y

y

y

y

y

y

y

E′′
oo

I
//

(10)

E′〈X′, x, X′′〉 = X′

ǫ〈X′, x, X′′〉 = x : V X′ → X′′

E′′〈X′, x, X′′〉 = X′′.

It turns out that a functor V : V′ → V′′ has a P-coalgebra structure if and only if it is an

equivalence. But equivalences span the essential image of I, just like isomorphisms span

it for ordinary categories.

Proposition 2.1. The embedding I : CAT→ CAT
→

is comonadic.

As always, this means that the comparison functor Υ from CAT to the 2-category CAT
→

P

of P-coalgebras is an equivalence. But note that all the notions involved: functor, coal-

gebra, equivalence — need to be suitably enriched† for this 2-dimensional setting. In

the presence of nontrivial 2-cells, the defining diagrams for coalgebras and their homo-

morphisms (Mac Lane 1971, VI.1(1op)) can be required to commute strictly, or up to

coherent isomorphisms, or up to arbitrary coherent 2-cells. Hence strict, pseudo and lax

coalgebras. Proposition 2.1 should be taken in the pseudo sense, i.e. up to coherent iso-

morphisms. Although P is a comonad in the strictest possible sense, its strict coalgebras

are not well-behaved: e.g., they can be naturally isomorphic, but have no strict coalgebra

homomorphisms between them.

A P-coalgebra K : V → PV will thus be given together with a pair of invertible 2-cells

† As in enriched category theory (Kelly 1982), the ordinary terminology is simply lifted to higher

dimensions: the most fundamental notions usually have unique liftings.
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in CAT
→

V PV V

θ
∼= ζ

∼=

PV P2V PV V

K

��

K //

dV

��

Id

;

;

;

;

;

;

;

;

;

;

;

;

;

;

��

K

��

PK

//
eV

//

(11)

They are required to be coherent, in the sense that all diagrams generated by them

commute. A set of conditions which ensure this can be found in (Street 1974; Zöberlein

1976). The filler θ realizes the so called chain condition, and ζ is the counit condition.

On the other hand, if L : U → PU is another coalgebra, a homomorphism Φ : K → L

will be a CAT
→
-morphism F : V → U , accompanied with an invertible 2-cell

V U

φ
∼=

PV PU

K

��

F //

L

��

PF

//

(12)

required to be coherent with the companions θ, ζ of K and L. With the 2-cells inherited

from CAT
→
, this time coherent with companions (12), P-coalgebras form the 2-category

CAT
→

P.

We shall now show that the canonical comparison functor Υ : CAT → CAT
→

P is an

equivalence, i.e. fully faithful and essentially surjective. The former means that there is

a natural equivalence

CAT (A,B) ≃ CAT
→

P (ΥA,ΥB) . (13)

The essential surjectivity means that each P-coalgebra is equivalent to one in the form

ΥA, for some category A.

Proof of proposition 2.1. Clearly, Υ must take each category A to the identity on it,

with the structure map

Id P (Id)

A A
→

A A
→

ΥA //

Id

��

I //

Id

��

id

||y
y

y

y

y

y

y

y

I
//

(14)
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Check that this is indeed a P-coalgebra, and that (13) will hold, is straightforward. So

Υ is full and faithful. Towards a proof that it is essentially surjective, we need to show

that the underlying functor V : V′ → V′′ of a P-coalgebra K : V → PV is always an

equivalence. This will yield the CAT
→
-equivalence V ≃ IdV′′

V′ V′′

V′′ V′′

V

��

V //

Id

��

id

~~}
}

}

}

}

}

}

Id
//

(15)

— which is a coalgebra homomorphism. Hence the required CAT
→

P-equivalence between

K and ΥV′′.

So let K : V → PV be an arbitrary coalgebra. As a CAT
→
-morphism, K is a triple

〈K′, κ, K′′〉 of two functors and a natural transformation, as on the next diagram. Their

further decomposition, displayed below, is induced by the couniversal property of the

comma construction.

V′ V/V′′

V′′ V/V′′

V

��

K′
//

Id

��

κ

||y
y

y

y

y

y

y

y

K′′
//

(16)

K′ = 〈K′
0 : V′ → V′, V K′

0
k′

→ K′
1, K′

1 : V′ → V′′〉

κ = 〈κ0 : K′
0 → K′′

0 V, κ1 : K′
1 → K′′

1 V 〉

K′′ = 〈K′′
0 : V′′ → V′, V K′′

0
k′′

→ K′′
1 , K′′

1 : V′′ → V′′〉

The commutativity condition on the V/V ′′-morphisms which form κ tells that

VK′
0 K′

1

V K′′
0 V K′′

1 V

V κ0

��

k′
//

κ1

��

k′′V
//

(17)

must commute. Note that the natural transformation V K ′
0 → K′′

1 V , shown on this

diagram, also appears as the companion E ′′κ◦ ǫK′ = κ1 ◦k
′ of the CAT

→
-morphism e ·K,

from the counit condition.

On top of all this, the coalgebra structure K : V → PV includes the invertible 2-cells

θ and ζ, supporting the chain and the counit conditions (11). In a sense, they are the

most important part here, since they actually force V to be an equivalence.
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Since the morphism e ·K boils down to 〈K ′
0 , κ1 ◦ k

′, K′′
1 〉, the invertible 2-cell ζ : Id→

e ·K yields the natural isomorphisms ζ ′ : IdV′ → K′
0 and ζ′′ : IdV′′ → K′′

1 . They must

satisfy condition (6), i.e.

κ1 ◦ k
′ ◦ V ζ′ = ζ′′V. (18)

The transformation k′′V ◦ V κ0 = κ1 ◦ k
′ from (17) is thus an isomorphism. It can

actually be made into an identity by precomposing with V ζ ′ and postcomposing with

the inverse of ζ′′V . Without loss of generality, we can thus assume that K ′
0 and K′′

1 are

both identities — on V′ and V′′ respectively. If they are not, transfer them along ζ ′,

resp. ζ′′. Of course, this changes the transformations k′, k′′, κ0 and κ1 as well, and the

composite transformation on (17) becomes identity on V .

The 2-cell θ, on the other hand, decomposes into natural isomorphisms θ ′ : DK ·K′ −→

I ·K′ and θ′′ : DK ·K′′ −→ I ·K′′. Each of them is a family of morphisms in V/V ′′
→
. This

is a comma category over a comma category: the components of θ ′ and θ′′ are pairs of

V/V′′-arrows — i.e. quadruples of V′′-arrows. We will not write them all out, but just

outline the way in which they lead to the conclusion that we are seeking.

Firstly, the domain part of θ′′ makes the arrow

K′′
0 k

′′ ◦ κ0K
′′
0 : K′′

0 → K′′
0 VK′′

0 → K′′
0 (19)

(as an object of an arrow category) isomorphic to the identity. In other words, this arrow

must be an isomorphism. Together with the equation k ′′V ◦ V κ0 = idV , derived from

(18), this implies that K ′′
0 is right adjoint to V , with the unit κ0 : Id → K′′

0 V and the

counit k′′ ◦ V i : VK′′
0 → Id, where i : K′′

0 → K′′
0 is the inverse of isomorphism (19). Cf.

(Pavlović 1995, appendix C).

In a similar fashion, the codomain part of θ′ ensures that the transformation k′ ◦ κ1 :

K′
1 → V → K′

1 is an isomorphism. As κ1 ◦ k
′ = idV has already been derived from (18),

k′ and κ1 turn out to be each other’s inverses. We can now transfer K′
1 along k′ : V → K′

1

and make it equal with V . Without loss of generality, the transformations k ′ and κ1 can

be taken to be identities.

With the structure of K simplified like this, it is not hard to see that the domain part

of θ′ forces κ0 : Id → K′′
0 V to be an isomorphism, while the codomain part of θ ′′ does

the same with k′′ : V K′′
0 → Id. Since these transformations are essentially the unit and

the counit of the adjunction V ⊣ K′′
0 , we conclude that V is an equivalence.

Is P a KZ-comonad? The preceding analysis of coalgebra K : V → PV shows that

it is completely determined, up to isomorphism, by the underlying functor V . Namely,

V carries a P-coalgebra structure, essentially unique, if and only if it is an equivalence.

Being a P-coalgebra is thus a property of V , rather than added structure. The category

of P-coalgebras in CAT
→

is thus equivalent with a subcategory of CAT
→
, and we have a

comonadic embedding, rather than just a comonadic forgetful functor. Indeed, the functor

I does not “forget” any structure, but actually localises C in C
→
.

In ordinary category theory, situations like this are captured by idempotent monads

and comonads (Appelgate and Tierney 1969). They respectively localise reflective and

coreflective subcategories in a given category, i.e. extract a property rather than impose a

structure. In 2-category theory, though, the (co)monads property extractiong (co)monads
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— those that allow essentially unique (co)algebra structures — may not be idempotent

in the ordinary sense. For instance, various free completions of categories significantly

enlarge any given input; yet they extract as algebras just the suitably complete categories.

Such constructions typically form KZ-monads. The name has been coined by Street

(Street 1974; Street 1980), from Kock’s (Kock 1972–95) and Zöberlein’s (Zöberlein 1976)

initials. A different name has been used in (Blackwell et al. 1989, 6.5).

While an ordinary idempotent comonad G forces each structure map K : V → GV to

be the inverse of the counit e : GV → V , in the 2-dimensional theory, a structure map

for a KZ-comonad G must be right adjoint to the counit. Abstractly, a KZ-comonad is

recognized by the presence of a 2-cell

ρ : eG→ Ge (20)

which yields identities whenever composed with either the comultiplicationd or the counit

e of G‡. In an ordinary category, such a 2-cell degenerates into the equality eG = Ge,

which a characteristic of the idempotent comonads. So it seems that the KZ-(co)monads

are the generalisation of the idempotent ones in the 2-dimensional setting and that any

property-extracting (co)monad on a 2-category should be KZ. What else could enforce

the essential uniqueness of the structure maps if not adjunction?

Well, the comma comonad P : CAT
→
→ CAT

→
provides an answer. P is not KZ, although

it certainly extends an idempotent comonad, namely the one derived from the domain

functor, as explained in the beginning. As demonstrated above, a P-coalgebra K : V →

PV is essentially unique and denotes a property of V . But K is generally not adjoint to

the counit eV : PV → V .

To show this, consider the case when V is the identity on V. The functor PV is then

the identity on the arrow category V
→
. The coalgebra structure K : Id→ P(Id) is 〈I, id, I〉,

where I : V → V
→
, as before, takes each object to its identity. The counit eId : P(Id)→ Id,

on the other hand, consists of the domain and the codomain functors, with the obvious

natural transformation between them, as on (10). A direct calculation now shows that,

for instance, for V = Set, there are no 2-cells K · e→ Id, or Id→ K · e. In fact, K and e

are adjoint if and only if V is a groupoid.

Remark. For a general 2-category C, the right adjoint D of I : C → C
→

exists if and only

if C is representable, in the sense of (Street 1974). With this assumption, proposition 2.1

goes through unchanged.

3. Duality comonad

What does all this have to do with the Chu construction?

The idea of the Chu construction is to transform an autonomous category V into a

‡ A KZ-comonad is thus a quadruple (G, d, e, ρ). In fact, had we chosen to call comonads cotriples (the

terminology which probably prevails in the literature), we would now be able to call KZ-comonads—
coquadruples. On the other hand, had we chosen to distinguish 2-dimensional monads as doctrines,

we would now have KZ-codoctrines, and could say in 2.1 that I is codoctrinary, or even codoctrinable.
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∗-autonomous, so that a chosen object ⊥ becomes dualising. In other words, the internal

homming into ⊥ is to be developed into an equivalence.

On the other hand, the comma comonad, as we have just seen, transforms arbitrary

functors into equivalences. It is thus not a coincidence that every Chu category is iso-

morphic to a comma category. And the couniversal property of the Chu construction is a

consequence of the couniversal property of the comma construction. But there are some

subtle points.

3.1. Self-adjunctions

Roughly, the idea is to get the Chu comonad by restricting the comma comonad P to the

subcategory of CAT
→

spanned by the homming endofunctors on autonomous categories.

But we shall take one step at a time, and first inquire how to restrict to contravariant

endofunctors V : V → Vop in general.

Formally, this restriction can be viewed as equalizing the functors Dom and Codop from

CAT
→

to CAT, which map V : V ′ → V′′ to V′ and to V′′op respectively. Of course, they

send a CAT
→
-morphism 〈F ′, F ′′, ϕ〉 : V → U to F ′ : V′ → U ′ and F ′′op : V′′op → U ′′op

respectively; and a 2-cell 〈λ′, λ′′〉 : F → G is projected to λ′ : F ′ → G′ by Dom and to

λ′′op : G′′op → F ′′op by Codop. The latter functor thus reverts the direction of the 2-cells,

and the former does not. In order to be able equalize them, we must begin by restricting

CAT
→

to invertible 2-cells.

Having done all this, we end up with the subcategory of CAT
→

consisting of the ob-

jects in the form V : V → Vop , the morphisms in the form 〈F, F op, ϕ〉, and the 2-cells

〈λ, (λ−1)op〉, where λ : F → G is a natural isomorphism and λ−1 : G → F its inverse,

yielding (λ−1)op = (λop)−1 : F op → Gop. The only trouble is that the comma comonad

P, as described in (10), cannot be directly restricted to this subcategory of contravariant

endofunctors, since the image of P consists of the identity functors. Therefore, P must

be slightly modified.

To see how, observe that applying the comma construction to an endofunctor V : V →

Vop yields a contravariant equivalence, duality

V/Vop
∼
→ (V/Vop)

op
(21)

— as soon as V is self-adjoint. Namely, a self-adjunction V ⊣ V op can be characterized

by the existence of an equivalence

V/Vop
∼
→ V/V op, (22)

commuting with the projections to V×Vop. (With an isomorphism instead of the equiva-

lence, this characterisation was already in (Lawvere 1963) — where the comma construc-

tion was actually introduced. The fact that an equivalence will do follows from (Pavlović

1995, lemma C.1).) Since V/V op is clearly isomorphic with (V/Vop)
op
, (22) yields (21).

Conversely, a duality (21), commuting with the projections to V × Vop , can exist only if

V ⊣ V op.

Therefore, CAT
→

must be restricted to the category SA of self-adjunctions. To minimize

the accumulation of the “op” superscripts, we shall consider them in the form V op :
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Vop → V rather than V : V → Vop; and we shall generically write ⊥⊥ instead of V op. A

self-adjunction will thus consist of a category V, equipped with a functor ⊥⊥ : Vop → V

and a natural family ηA : A→ A⊥⊥ satisfying

(ηA)⊥ ◦ η(A⊥) = idA (23)

where X⊥ denotes ⊥⊥X, viewed as well and object of V, as well as the same object ⊥⊥
op
X

in Vop. It is easy to show that η induces the natural bijection

V(A,B⊥) ∼= V(B,A⊥). (24)

The SA-morphisms are extracted from CAT
→

by equalizing the domain and the codo-

main components, as outlined above. Given another category U , again with⊥⊥ : Uop → U

and ηB : B → B⊥⊥, an SA-morphism will thus be a functor F : V → U , accompanied

with a natural family ϕA : F (A⊥)→ (FA)⊥, preserving the adjunction, i.e. making the

diagram

FA F (A⊥⊥)

(FA)⊥⊥ (F (A⊥))⊥

ηFA

��

FηA //

ϕ(A⊥)

��

(ϕA)⊥
//

(25)

commute. If E : U → W is another such morphism, accompanied with ǫB : E(B⊥) →

(EB)⊥, the composite E · F will be accompanied with

EF (A⊥)
EϕA
−→ E(FA)⊥

ǫFA
−→ (EFA)⊥, (26)

just as (5) suggests.

Finally, given SA-morphisms F,G : V → U a 2-cell between them will be a natural

isomorphism λ : F
∼
→ G, coherent with the companions ϕ and γ, in the sense that

F (A⊥) G(A⊥)

(FA)⊥ (GA)⊥

ϕA

��

λ(A⊥)
//

γA

��

(λA)⊥
oo

(27)

commutes. This condition is, of course, derived from (6).

The objects and the arrows of SA will usually be denoted by the names of their un-

derlying categories V, U , and by the names of the underlying functors F , G.
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3.2. Dualities

A duality, is a self-adjunction which happens to be an equivalence. In fact, a functor

∗ : Dop → D is duality if and only if there is an isomorphism

A ∼= A∗∗ (28)

natural in A. The existence of such an isomorphism implies that ∗ has to be self-adjoint

(Pavlović 1995, lemma C.1 again) and that its unit ηA : A → A∗∗ must be an iso-

morphism too (Johnstone and Moerdijk 1989, lemma 1.3.). The duality functors will

invariably be denoted by ∗.

The morphisms of dualities will be the functors that preserve them. In other words, a

duality morphism G : D → E should come accompanied with a natural iso

γA : G(A∗)
∼
→ (GA)∗, (29)

coherent with the units ηA : A
∼
→ A∗∗ of the equivalences ∗ on D and E . This coherence

condition is a special case of (25), and a duality morphism is just a morphism of self-

adjunctions which happens to be accompanied by an iso. Dualities and their morphisms

form a subcategory DU of SA, full on the 2-cells, but not on the 1-cells.

3.3. The comonad

Now we want to show that the inclusion U : DU →֒ SA is comonadic. We first construct

its right adjoint C : SA → DU, and then show that the category of coalgebras for the

induced comonad G = U · C is equivalent with DU.

The object part of C is based on (21). Given a self-adjunction V, the underlying cate-

gory of the duality CV will be the dual comma

CV = (V/⊥⊥)op. (30)

The duality functor ∗ : (CV)op → CV is now induced by the transposition along (24)

〈A,A
f
→ B⊥, B〉∗ = 〈B,B

f∗

→ A⊥, A〉, (31)

— where f∗ : B → A⊥ denotes the transpose of f : A → B⊥. On morphisms 〈u, v〉 :

〈A, f, B〉 → 〈C, g,D〉, this duality just switches the components:

〈A, A B⊥, B〉

〈C, C D⊥, D〉

f //

v

��

u

OO

u

OO

g
//

v⊥

OO

(32)

〈u, v〉∗ = 〈v, u〉 : 〈D, g∗, C〉 → 〈B, f∗, A〉. (33)

Note that the unit ηA : A→ A∗∗ is indentity, which means that the functor ∗ is actually

an isomorphism.

The arrow part of C, on the other hand, is based on the arrow part of the functor
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D from section 2. An SA-morphism F : V → U of self-adjunctions, will thus induce a

functor CF : CV → CU defined as follows:

CF 〈A,A
f
→ B⊥, B〉 = 〈FA, FA

Ff
−→ F (B⊥)

ϕ
−→ (FB)⊥, FB〉 (34)

CF 〈u, v〉 = 〈Fu, Fv〉 (35)

Condition (25) ensures that this is a DU-morphism. In the first instance, it says that

FB F (B⊥⊥) F (A⊥)

(FB)⊥⊥ (F (B⊥))⊥ (FA)⊥

ηFB

��

FηB //

ϕ(B⊥)

��

F (f⊥)
//

ϕA

��

(ϕB)⊥
//

(Ff)⊥
//

(36)

commutes for every f : A→ B⊥. Via standard transpositions

f⊥ ◦ η = f∗ and

(ϕB ◦ Ff)⊥ ◦ ηFB = (ϕB ◦ Ff)∗,

diagram (36) yields

ϕA ◦ F (f∗) = (ϕB ◦ Ff)∗. (37)

But this equation implies that CF preserves the duality — on the nose:

CF 〈A,A
f
→ B⊥, B〉∗

(31)
= CF 〈B,B

f∗

→ A⊥, A〉

(34)
= 〈FB, FB

Ff∗

→ F (A⊥)
ϕ
→ (FA)⊥, FA〉

(37)
= 〈FB, FB

(ϕ◦Ff)∗

−→ (FA)⊥, FA〉 (38)

(31)
= 〈FA, FA

Ff
→ F (B⊥)

ϕ
→ (FB)⊥, FB〉∗

(34)
=

(

CF 〈A,A
f
→ B⊥, B〉

)∗
.

With identity as its companion, CF is thus a duality morphism.

A 2-cell λ : F → G from SA induces inDU a 2-cell Cλ : CF → CG, with the components

(Cλ)〈A, f, B〉 = 〈(λA)−1 , λB〉.

〈FA, FA FB⊥ (FB)⊥, FB〉

〈GA GA GB⊥ (GB)⊥, GB〉

Ff // ϕ //

λ(B⊥)

��

λB

��

(λA)−1

OO

Gf
//

(λA)−1

OO

ϕ
//

(λB)⊥

OO

(39)

Since the companions of CF and CG are identities, the condition (27) applied on Cλ boils

down to the fact that the 2-cell (Cλ)〈A, f, B〉∗ is the inverse of (Cλ〈A, f, B〉)∗.

This completes the definition of C : SA→ DU.
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Proposition 3.1. The functor C : SA→ DU is right adjoint to the inclusion U : DU →֒

SA.

Proof. The components of the counit e : UC → Id and of the unit h : Id → CU of the

adjunction U ⊣ C are obtained from the functors

E : CV → V : 〈A,A
f
→ B⊥, B〉 7−→ B and (40)

H : V → CV : A 7−→ 〈A⊥, A⊥ id
→ A⊥, A〉. (41)

For any self-adjunction V, each of these functors underlies an SA-morphism. The former

is accompanied by the natural family

ǫ〈A,A
f
→ B⊥, B〉 = f : A→ B⊥, (42)

which has already appeared in (10); the latter by χA = 〈η, id〉.

H(A⊥) = 〈A⊥⊥, A⊥⊥ A⊥⊥, A⊥〉

(HA)∗ = 〈A, A A⊥⊥, A⊥〉

χA

��

id //

id

��

η

OO

η

OO

η
//

id

OO

(43)

Note that V is a duality if and only if χ is an isomorphism, which makes H into a

duality morphism. The self-adjunction morphisms eV = E : CV → V thus form a natural

transformation e : UC → Id in SA, while the duality morphisms hD = H : D → CD

form a natural transformation h : Id → CU. The adjunction identity eU ◦ Uh = idU is

immediate, while Ce ◦ hC = idC boils down to expanding (34) for e.

Definitions (40–43) also yield the data of the comonad G = U · C : SA→ SA, namely

eV = E : GV → V (44)

dV = UhCV
= H : GV → G

2V (45)

Proposition 3.2. The inclusion U : DU →֒ SA is comonadic.

Proof. The comparison functor for the comonad G is

H : DU→ SA : D 7−→
(

H : D → GD
)

(46)

where H is the SA-morphism defined by (41) and (43). This is a G-coalgebra if and only if

D is a duality. Indeed, the triangle from (11) commutes always, and we have with ζ = id.

The square can be filled with a 2-cell θ : d · H → GH ·H , the components of which are

η and the identities. This 2-cell will be invertible if and only if η is, i.e. if and only if D

is a duality.

Similarly, a square realizing a morphism HV → HU as on (12) can always be filled with
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a 2-cell φ = 〈ϕ, id〉

V U

GV GU

H

��

F //

H

��

φ

}}|
|

|

|

|

|

|

GF

//

(47)

where ϕ is the companion of the SA-morphism F . φ will thus be invertible if and only if

ϕ is; i.e., F will be a coalgebra homomorphism if and only if it is a DU-morphism.

Since the 2-cells of DU and of SA coincide, we conclude that the comparison functor H

is full and faithful. It remains to be shown that it is essentially surjective.

So let K : V → GV be an arbitrary G-coalgebra. Recalling that the underlying category

of GV is (V/⊥⊥)op, let us decompose (as in the proof of 2.1)

KA = 〈K0A, K0A
kA
−→ (K1A)

⊥, K1A〉, (48)

where where K0 : V → Vop and K1 : V → V are functors, and k : K0 → ⊥⊥
op
K1 is a

natural transformation. Since (40) immediately yields EK = K1, the filler ζ of the counit

condition on K yields an isomorphism

j : Id
∼
→ K1. (49)

In a moment, we shall prove that k : K0 →⊥⊥
op
K1 is an isomorphism too — which gives

the isomorphism

i = j⊥ ◦ k : K0
∼
→⊥⊥K1

∼
→⊥⊥

op
. (50)

Together, such is and js now form a natural isomorphism ι : H
∼
→ K.

HA = 〈A⊥, A⊥ A⊥, A〉

KA = 〈K0A, K0A (K1A)
⊥, K1A〉

ιA

��

id //

jA

��

iA

OO

iA

OO

kA
//

(jA)⊥

OO

(51)

It is not hard to check that ι is a 2-cell in SA. It accompanies the identity on V as a

coalgebra isomorphism between H and K.

V V

ι
∼=

GV GV

H

��

Id //

K

��

G(Id)

//

(52)

This 2-cell is coherent, in the sense of (Street 1974; Zöberlein 1976), with the companions

θ, ζ of the coalgebras H and K — since it has been derived from them.
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In this way, an arbitrary coalgebra K : V → GV is shown to be isomorphic with the

coalgebra HV = H : V → GV. This means that H is essentially surjective.

To complete the proof, we must fill the gap left behind: prove that k : K0 →⊥⊥
op
K1 is an

iso. As in the proof of 2.1, the task is simplified by transferring K1 along j : Id
∼
→ K1,

which makes it into the identity functor, while the transformation k becomes K0 →⊥⊥
op
.

The companion κ of the SA-morphism K is now

K(A⊥) = 〈K0(A
⊥), K0(A

⊥) A⊥⊥, A⊥〉

(KA)⊥ = 〈A, A (K0A)
⊥, K0A〉

κA

��

k(A⊥)
//

κ1A

��

κ0A

OO

κ0A

OO

(kA)∗
//

(κ1A)⊥

OO

(53)

Again as in 2.1, the companion of e ·K is ǫK ◦Eκ = k ◦κ1. By the counit condition, this

natural transformation must be an iso, which means that k is a split epi. Indeed, just

like (cf. (18)) led to (18), condition (27), applied to ζ : Id→ e ·K, now yields

(ζA)⊥ ◦ k ◦ κ1 ◦ ζ(A
⊥) = idA⊥ . (54)

which is

To prove that k is a monic as well, we use the chain condition, i.e. the natural isomorphism

θ : CK ·K −→ dV ·K. Its components are in G2V, a double comma category again. The

objects are thus in the form 〈A, f, B〉, where A = 〈A0, a, A1〉 and B = 〈B0, b, B1〉 are

objects and f = 〈f0, f1〉 : A→ B∗ an arrow from GV =
(

V/⊥⊥
)op

. To reach the required

conclusion, it suffices to calculate and compare the components f1 of CK ·K(A) and of

dV ·K(A). The latter f1 is the identity on K0A. The former is κ1A ◦ kA : K0A→ A⊥ →

K0A. Since the chain condition, i.e. the 2-cell θ, makes these two arrows isomorphic, kA

must be a split monic. But we already know that it is a split epi — so it must be an iso.

Hence the result: K is isomorphic to H . The comparison functor H is an equivalence.

A KZ-comonad? No, G : SA→ SA is not a KZ-comonad either. Since all 2-cells in SA

are invertible, an SA-morphism can have an adjoint only if the underlying functor is an

equivalence. But GV is equivalent to V if and only if V is a groupoid. In general, thus, a

coalgebra K : V → GV is not adjoint to the counit eV : GV → V.

4. The Chu comonad

In this section we finally focus on self-adjunctions induced by internal homming (2) in

autonomous categories. They form a category AU⊥. Its morphisms preserve the auto-

nomous structure up to specified natural transformations, just like the SA-morphisms

preserved ⊥⊥. More than this lax preservation property would not be preserved by the

arrow part of the comma construction.

On the other hand, the self-dual autonomous categories form the category AU∗. There

are forgetful functors AU⊥ → SA and AU∗ → DU, and proposition 3.2 will be lifted along

them.
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4.1. ⊥-Autonomous categories

An object V of AU⊥ is an autonomous category with a distinguished object ⊥. The

autonomous, or symmetric monoidal closed structure, consists of a tensor ⊗, a unit ⊤,

and a cotensor −◦, tied together with a standard set of coherent natural transformations

(Kelly 1982, sec. 1.4–1.5). This structure does not restrict the choice of ⊥ in any way,

and this can be any object of V. It just induces and represents a self-adjunction on V.

For reasons which will become clear in 4.3.1, we shall consider only those ⊥-autono-

mous categories V ∈ AU⊥ which have pullbacks, as well as pushouts. However, note that

these limits are not treated as structure; their existence is just a needed property. The

morphisms will thus not be required to preserve them.

An AU⊥-morphism from V to U is a functor F : V → U accompanied with the following

natural transformations.

1 1

V U V U

V × V U × U Vop × V Uop × U

V U V U

⊤

�

�

�

�

�

�

�

�

�

�

���

⊤

0

0

0

0

0

0

0

0

0

0

0

��

⊥

�

�

�

�

�

�

�

�

�

�

���

⊥

3

3

3

3

3

3

3

3

3

3

3

��

φ⊤

��

F
//

F
//

φ⊥

OO

⊗

��

F×F
//

⊗

��

−◦

��

Fop×F
//

−◦

��

φ⊗

~~|
|

|

|

|

|

|

F
//

F
//

φ−◦

y

y

y

y

y

y

y

<<

(55)

These companionsmust be coherent with the autonomous structure. To state this require-

ment precisely, let us consider a diagram ∆, composed of some of the transformations

φ from (55), together with some of those coming from the autonomous structure, or

their F -images. Let |∆| be the diagram obtained from ∆ by erasing F and replacing

each occurrence of φ with the identity. If ∆ involved functors with at most n arguments,

then |∆| will be a diagram in the free autonomous category with n+ 1 generators. The

additional generator plays the role of ⊥.

The coherence condition on φ is that

∆ must commute whenever |∆| commutes.

An explicit set of coherence conditions for φ can thus be derived from any set of coherence

conditions for the autonomous structure.

Proving the compositionality of AU⊥-morphisms is a routine exercise. The companions

are defined by composing 2-cells (55).

If F,G : V → U are two AU⊥-morphisms, a 2-cell λ from F to G in AU⊥ is a natural

isomorphism λ : F → G which yields yields the companions γ of G when pasted in (55)

wherever possible.
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This completes the definition of the category AU⊥. Each of its objects is an autonomous

category and a self-adjunction, with ⊥⊥ induced by homming into ⊥. Its morphisms lax

preserve the autonomous structure and ⊥⊥. So they are also self-adjunction morphisms,

with companions derived from the right-hand side of (55). Finally, the 2-cells of AU⊥

also qualify as 2-cells of SA. Hence the forgetful functor AU⊥ → SA.

4.2. ∗-Autonomous categories

By definition, a category D is ∗-autonomous if it is autonomous and self-dual. In fact, it is

enough to have the symmetric monoidal structure ⊗,⊤, and an equivalence ∗ : D op → D,

tied together by natural transformations saying that, for every A

A −◦ (−) =
(

A⊗ (−)∗
)∗

(56)

is right adjoint to A⊗ (−). Hence the closed structure. Categories with these data form

AU∗.

A morphism between the ∗-autonomous categories D and E will be a functor G : D →

E , accompanied with the data from the left-hand side of (55), plus (29)

γ⊤ : ⊤ −→ G⊤

γ⊗AB : G(A) ⊗G(B) −→ G(A ⊗B) (57)

γ∗A : G(A∗)
∼
−→ (GA)∗

The coherence condition can be stated as for the AU⊥-morphisms above. The 2-cells of

AU∗ will again be just the natural isomorphisms, coherent with all the involved compan-

ions. Hence the category AU∗, with the obvious forgetful functor AU∗ → DU.

On the other hand, there is a functor U : AU∗ → AU⊥, injective on objects, faithful

on morphisms, full and faithful on 2-cells. It could even be made into an inclusion by

adding some redundant data in the definition of AU∗.

First of all, each ∗-autonomous category can be viewed as an object of AU⊥ — with the

autonomous structure supplied by (56), and ⊥ defined to be ⊤∗. Furthermore, each AU∗-

morphismG yields an AU⊥-morphism with the same underlying functor. The companion

γ⊥ is derived from γ⊤ and γ∗, using ⊥= ⊤
∗, while γ−◦ is derived from γ⊗ and γ∗, using

(56). The 2-cells are then found to coincide.

4.3. The comonad

The functor Chu : AU⊥ −→ AU∗ will be obtained by lifting C : SA −→ DU along the

forgetful functors AU⊥ → SA and AU∗ → DU. In other words, to get Chu from C, one

just adds the autonomous structure.

4.3.1. Object part. The ∗-autonomous category Chu(V), associated with the ⊥-autono-

mous category V ∈ AU⊥ is thus the comma (V/⊥⊥)op again. The duality ∗ is as in (31–33).

Extending the autonomous structure from V to Chu(V) is more subtle, though. This is

perhaps the most important contribution of (Chu 1979).
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First of all, the duality ∗ on any ∗-autonomous category D, can be viewed as a “De

Morgan switch” between the autonomous structure (⊤,⊗,−◦) of D and the autonomous

structure (⊥,⊕, ◦−) of Dop. Thus, either of the tensors or cotensors, with either of the

units — determines all.

If D = Chu(V), the cotensor ◦− must internalize the hom-sets of the comma category

Dop = V/⊥⊥. For any objects X = 〈A, f, B〉 and Y = 〈C, g,D〉 from this category,

Y ◦− X should thus represent “the set of all pairs u : A→ C and v : D → B such that

g ◦ u = v⊥ ◦ f” (3). Using the closed structure of V, this set is encoded as the pullback

P D −◦ B

B⊥−◦ D⊥

(A⊗D)⊥

A −◦ C A −◦ D⊥

//

��

h

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

##

��

f−◦D⊥

��

A−◦g
//

∼iiS
S

S

S

(58)

which leads to the definition:

Y ◦− X = 〈P, P
h
−→ (A ⊗D)⊥, A⊗D〉. (59)

The corresponding unit ⊥̃ must be 〈⊤, η⊤,⊥〉, since only this object ensures the natural

correspondence

Chu(V)
(

Y ◦− X, ⊥̃
)

∼= Chu(V)(Y,X). (60)

The autonomous structure of Chu(V) is now derived as follows:

⊤̃ = ⊥̃∗
(

= 〈⊥,⊥
id
−→⊥,⊤〉

)

(61)

X ⊗ Y = Y ◦− X∗ (62)

X −◦ Y =
(

Y ∗ ◦− X∗
)∗

. (63)

Spelling out the construction of X ⊗ Y = 〈P ′, h′, B ⊗D〉, one gets the pullback

P ′ D −◦ A

D −◦ B⊥

B −◦ C B −◦ D⊥ (B ⊗D)⊥

//

��

h′

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M&&

D−◦f

��

∼

��

B−◦g
//

∼
//

(64)

which is actually simpler to memorize than (58), although it does not appear to be as

directly motivated.

In principle, there is no reason why the described ∗-autonomous structure of Chu(V)

would be the only one. In order to establish Chu as a functor well-defined in itself, one

is thus led to look for a sense in which this structure would be canonical, i.e. completely
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determined by the autonomous structure of V, together with some preservation require-

ments. For instance, note that both E : Chu(V) −→ V (40) and H : V −→ Chu(V) (41)

preserve the monoidal structure defined above. However, requiring that these functors

are monoidal does not pin down the structure of Chu(V). A different structure, still sat-

isfying this requirement, can be obtained if the the object P , defined on (58), is replaced

in the definition of Y ◦− X by any subobject R →֒ P that contains all global points

⊤→ P . This indeed ensures that condition (60) still holds, with the same ⊥̃.

To enforce definition (59), one needs to take into account a more general condition

than (60), namely

Chu(V)
(

Y ◦− X, (HA)∗
)

∼= Chu(V) (Y ⊗HA, X) , (65)

and to require not just that H preserves ⊤, but that for every A ∈ V, the functor

(−)⊗HA = (−) ◦−(HA)∗ is defined componentwise, i.e. that

Y ◦−(HA)∗ = 〈A −◦ C, A −◦ C
A−◦g
−→ A −◦ D⊥ ∼= (A ⊗D)⊥, A⊗D〉, (66)

holds for any Y = 〈C, g,D〉. It is easy to see that this is satisfied by definition (59). The

other way around, using (65), one readily shows that (66) implies (59).

In this way, Chu(V), as a ∗-autonomous category, is completely determined.

Remark. So far, we have actually shown that the functor C : SA → DU, applied to a

⊥-autonomous category with pullbacks, yields a ∗-autonomous category. However, to get

a ∗-autonomous category with pullbacks again, one must start from a ⊥-autonomous

category which also has pushouts, and not only pullbacks. This is a consequence of the

lemma in the appendix.

4.3.2. Arrow part. Given an AU⊥-morphism F : V → U , the underlying functor of G =

Chu(F ) : Chu(V) −→ Chu(U) is defined as on (34–35). The transformation F (B⊥)
ϕ
→

(FB)⊥, used there, is now obtained as the composite

F (B −◦⊥)
φ−◦
−→ (FB −◦ F⊥)

φ⊥
−→ (FB −◦⊥). (67)

The coherence of (55) ensures that this transformation satisfies (25), which implies, as in

(38), that the defined functor strictly preserves ∗. The companion γ∗ of Chu(F ) is thus

the identity.

On the other hand, γ⊤ : ⊤→ G⊤ is just 〈φ⊥, φ⊤〉. Indeed, the coherence of φ guaran-

tees that the square on

〈⊥, ⊥ ⊥, ⊤〉

〈F⊥, F⊥ (F⊤)⊥, F⊤〉

id //

φ⊤

��

φ⊥

OO

φ⊥

OO

ϕ
//

φ⊥
⊤

OO

(68)
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commutes. Finally γ⊗ : GX ⊗GY −→ G(X ⊗ Y ) is 〈q, φ⊗〉, i.e.

〈P ′′, P ′′ (FB ⊗ FD)⊥, FB ⊗ FD〉

〈FP ′, FP ′ F
(

(B ⊗D)⊥
)

(F (B ⊗D))
⊥
, F (B ⊗D)〉

h′′
//

φ⊗

��

q

OO

q

OO

Fh′
//

ϕ
//

φ⊥
⊗

OO

(69)

where q is defined on the following diagram.

FP ′ F (D −◦ A)

P ′′ FD −◦ FA

FB −◦ FC (FB ⊗ FD)⊥

(F (B ⊗D))
⊥

F (B −◦ C) F
(

(B ⊗D)⊥
)

//

��

q

##

F

F

F

F

F

F

��

φ−◦

vvll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

//

h′′

D

D

D

D

D

D

D

D

D

D

D

""�� ��
//

φ⊥
⊗

ffL
L

L

L

L

L

L

φ−◦

~

~

~

~

~

~

~

~

~

~

~

~

??

//

ϕ
ggO
O

O

O

O

O

O

O

(70)

The larger square is just the F -image of (64), while the smaller one is (64) instanciated

with the F -images of X and Y . The latter is thus the pullback square which defines

GX ⊗GY . Since the bottom and the right-hand side trapezoids commute by coherence,

the arrow from FP ′ to (FB ⊗ FD)⊥ via FD −◦ FA must be equal with the one via

FB −◦ FC. Hence the unique arrow q, making (70) commute.

The coherence of the constructed companions γ follows directly from the coherence of

φ.

The fact that the 2-cell Chu(λ) : Chu(F ) → Chu(F ′), defined as on (39), will be

coherent with respect to such companions of Chu(F ) and of Chu(F ′) follows from the

coherence of λ : F → F ′ with respect to the companions of F and F ′.

4.3.3. Couniversality of Chu. To prove that Chu is right adjoint to U : AU∗ → AU⊥,

i.e. to lift proposition 3.1, one needs to show that the functors E : Chu(V) → V and

H : V → Chu(V), defined as before, induce AU⊥-morphisms, and that the latter preserves

∗ up to iso when V is ∗-autonomous. These morphisms form the units of the adjunction

U ⊣ Chu.

It is immediate from the definitions that both E and H strictly preserve ⊤ and ⊗.

Moreover, E preserves ⊥. So we only need to spell out

ǫ−◦XY : E(X −◦ Y ) −→ (EX −◦ EY )
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χ−◦AB : H(A −◦ B) −→ (HA −◦ HB) and

χ⊥ : H⊥−→⊥

for arbitrary A,B from V and X = 〈A, f, B〉 and Y = 〈C, g,D〉 from Chu(V). The

remaining companions of E and H will all be identities.

To calculate X −◦ Y = (X ⊗ Y ∗)∗, instanciate (64) again.

Q C −◦ A

B −◦ D (B ⊗C)⊥

//

k

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

$$

ǫ−◦

�� ��
//

(71)

Hence X ⊗ Y ∗ = 〈Q, k, B⊗C〉. The transposition now yields X −◦ Y = 〈B ⊗C, k∗, Q〉,

and thus E(X −◦ Y ) = Q. Since EX = B and EY = D, the −◦-companion of E

is actually the arrow Q −→ (B −◦ D) from (71). The universality of its construction

ensures the coherence.

Similarly, HA −◦ HB is obtained by transposing the pullback

A −◦ B B⊥ −◦ A⊥

A −◦ B A −◦ B⊥⊥
(

A ⊗B⊥
)⊥

//

m

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P ''

=

��

∼

��

A−◦η
//

∼
//

(72)

which defines HA⊗HB∗ = 〈A −◦ B,m,A⊗B⊥〉. Hence χ−◦ : H(A −◦ B) −→ (HA −◦

HB)

〈(A −◦ B)⊥, (A −◦ B)⊥ (A −◦ B)⊥, A −◦ B〉

〈A⊗ B⊥, A ⊗B⊥ (A −◦ B)⊥, A −◦ B〉

id //

id

��

m∗

OO

m∗

OO

m∗
//

id

OO

(73)

Finally, the χ⊥ : H⊥→⊥ is just the ⊤-component of (43).

〈⊥⊥, ⊥⊥ ⊥⊥, ⊥〉

〈⊤, ⊤ ⊥⊥, ⊥〉

id //

id

��

η

OO

η

OO

η
//

id

OO

(74)

The coherence of these companions of H is a direct consequence of the way in which

they are derived from the closed structure of V. On the other hand, note that V is a ∗-

autonomous category if and only if all η : B → B⊥⊥ are isomorphisms, i.e. if and only if

χ−◦ and χ⊥ are isomorphisms. Thus, V is ∗-autonomous if and only if H : V −→ Chu(V)

is an AU∗-morphism.
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Showing that E and H realize the adjunction U ⊣ Chu and that U is comonadic

is exactly the same as in 3.1 and 3.2. The demonstrated couniversality thus does not

essentially depend on the autonomous structure. It is therefore even more interesting

that the involved constructions preserve the autonomous structure, when present, in

such a remarkable way, as shown by the Chu construction.

Theorem 4.1. The functor Chu : AU⊥ −→ AU∗ is right adjoint to the forgetful functor

U : AU∗ → AU⊥ (cf. sec. 4.2). This functor is comonadic: the induced coalgebras and

homomorphisms exactly correspond to ∗-autonomous categories and their morphisms.

Remark. With more work, a similar result could be proved for Hyland-de Paiva’s Dialec-

tica categories (de Paiva 1989). Just like the Chu categories, they can be reduced to the

comma construction, only this time poset-enriched.

Appendix A. Limits and colimits in a Chu category

The limits in Chu(V) are constructed using both the limits and the colimits in V. In view

of the self-duality of Chu(V), the same must be true for the colimits in it. The other

way around, the limits and the colimits in V can be reconstructed from either limits or

colimits of Chu(V).

Lemma. Let V be a category, ⊥⊥ : Vop → V a functor, self-adjoint on the right, and Γ a

class of diagram schemes. The following conditions are equivalent:

(a). V has Γ-limits and Γ-colimits.

(b). V/⊥⊥ has Γ-limits.

(c). V/⊥⊥ has Γ-colimits.

Proof. (a)⇒(b) is based on the fact that the functor⊥⊥ preserves colimits. For instance,

since (B +D)⊥ = B⊥ ×D⊥, the binary product in V/⊥⊥ can be defined:

〈A, f, B〉 × 〈C, g,D〉 = 〈A× C,A× C
f×g
−→ B⊥ ×D⊥, B +D〉. (75)

Since V/⊥⊥ is self-dual, (b)⇔(c) is obvious.

To complete the proof, it suffices to show (b)∧(c)⇒(a). For this, we use the coreflection

H ⊣ E :
(

V/⊥⊥
)op
→ V from (40–41) (Of course, the coreflection of V in V/⊥⊥ would do

as well; but H ⊣ E has already been spelled out.) If ∆ : I → V is a diagram, with I ∈ Γ,

and if L and C are respectively a limit and a colimit of the diagramH∆ in
(

V/⊥⊥
)op

, then

EL and EC will be respectively a limit and a colimit of ∆ in V. The former is obvious,

since E must preserve limits. The latter follows from the fact that the inclusion of a

(co)reflective subcategory creates (co)limits, which is easy to check and surely belongs

to folklore.
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