Towards semantics of self-adaptive software

Dusko Pavlovi¢

Kestrel Institute, Palo Alto, USA
dusko@kestrel.edu

Abstract. When people perform computations, they routinely moni-
tor their results, and try to adapt and improve their algorithms when
a need arises. The idea of self-adaptive software is to implement this
common facility of human mind within the framework of the standard
logical methods of software engineering. The ubiquitous practice of test-
ing, debugging and improving programs at the design time should be
automated, and established as a continuing run time routine.

Technically, the task thus requires combining functionalities of au-
tomated software development tools and of runtime environments. Such
combinations lead not just to challenging engineering problems, but also
to novel theoretical questions. Formal methods are needed, and the stan-
dard techniques do not suffice.

As a first contribution in this direction, we present a basic math-
ematical framework suitable for describing self-adaptive software at a
high level of semantical abstraction. A static view leads to a structure
akin to the Chu construction. An dynamic view is given by a coalgebraic
presentation of adaptive transducers.

1 Introduction: specification carrying code

One idea towards self-adaptive software is, very roughly, to introduce some kind
of “formalized comments”, or Floyd-Hoare style annotations as first class cit-
izens of programs. Together with the executable statements, they should be
made available to a generalized, adaptive interpreter, extended by an automated
specification engine (e.g., SPECWARE™™-style), supported by theorem provers
and code generators. This adaptive interpreter would not only evaluate the exe-
cutable statements, but also systematically test how their results and behaviour
satisfy the requirements specified in the formal annotations. Such testing data
could then be used for generating improved code, better adapted to the spec-
ifications, often on the fly. On the other hand, the formal specifications could
often also be refined, i.e. adapted to the empiric data obtained from testing a
particular implementation.

1.1 Automated testing and adaptation

Coupling programs with their specifications in a uniform, automatically sup-
ported framework would, at the very least, allow monitoring correctness, relia-
bility, safety and liveness properties of programs, with respect to the specified

requirements, as well as the particular distribution of the input data, and any
other aspects of the execution environment that may become available at run
time.

In some cases, one could hope for more than mere monitoring of the relation-
ship between an abstract specification and its implementation. Indeed, software
can often be improved and adapted to its specifications in a predictable fash-
ion, once its running behaviour can be observed on concrete inputs. This is, for
instance, usually possible in the cases when the correctness criteria are not ab-
solute, viz when the software only approximates its specification. Software that
models physical systems, or stochastic processes, or even just computes genuine
real numbers or functions, is usually of this kind: the infinitary nature of the
output data precludes the exact solutions, which can only be approximated. But
the approximations can, in principle, always be improved, on an additional cost.
Comparing the actual runs of such software with its abstract specifications may
suggest optimizing this cost, say, by adjusting the coefficients in the numeric
formulas to the observed distribution of the input data. In some cases, different
distributions may even justify applying different algorithms, which can be ab-
stractly classified in advance, so that the adapted code can be synthesized on
the fly.

Self-adaptive software can perhaps be compared with an engineer monitoring
the results of his computations, updating the methods and refining the model.
The point is here that a part of this process of adaptation can and needs to be
automated.

1.2 Dynamic assembly and reconfiguration

Furthermore, in a complex software system, the adaptation cycle of a software
component can take into account not only the run time behaviour of the com-
ponent itself, but also the behaviour of the other components, and the changes
in the environment at large.

In order to be combined, software modules must contain sufficient informa-
tion about their structure and behavior. Conventional application programming
interfaces, APIs, are intended to carry such information but APIs are usually
under-specified (they contain just signature/type information), are often based
on unfulfilled assumptions, and are prone to change. Conventional APIs are thus
insufficient for the task of assured composition.

Ideally, APIs would completely capture all assumptions that influence behav-
ior. However, formally verifying such completeness is usually infeasible — some
degree of API partiality is inevitable in practical software development. Nev-
ertheless, in dynamically adaptable software, API partiality should continually
decrease as the interfaces evolve during the lifetime of a system, together with
the specifications and implementations of its components and perhaps even its
architecture.

We believe that the requirement of dynamically adaptable software naturally
leads to the idea of specification-carrying code: an adaptable program must
carry a current specification of its functionality, an adaptable specification must

come with a partial implementation. Adaptability requires a simultaneous and
interactive development of the logical structure and the operational behavior.

Moreover, specification-carrying code is the way to accommodate and sup-
port, rather than limit and avoid, the rich dynamics of ever changing interfaces,
so often experienced in large software systems, with the unpredictable interac-
tions arising from the ever changing environments. The fact that specifications,
implementations, interfaces and architectures in principle never stop changing
during their lifetime, should not be taken as a nuisance, but recognized as the
essence of the game of software, built into its semantical foundation, and imple-
mented as a design, and when possible a runtime routine.

Of course, adjusting the behaviour of autonomous software components to
each other, tuning them in on the basis of their behaviour, or getting them to
interact in a desired way, can be a very hard task. But if their abstract specifi-
cations in a generic language are maintained on a suitable formal platform, and
kept available at run time, their possible interactions and joint consistency can
be analyzed abstactly, e.g. using theorem provers, and their implementations can
be modified towards a desired joint behaviour. This may involve reimplementing,
i.e. synthesizing new code on the fly, and is certainly not a straightforward task.
However, it seems unavoidable for the independently implemented components,
necessary for the compositional development of systems — and we believe that
it is also within the reach of the current software synthesis technologies.!

In any case, a software system that needs to adapt its code and behaviour
the run time data, or to the changes of the environment, while maintaining its
essential functionality, will surely need to carry and maintain a specification of
this functionality in some form, perhaps including a history record, and a cur-
rent correctness certificate. Since this task, and the structures involved, clearly
go beyond the existing software methodologies, a careful analysis of the semanti-
cal reprecussions seems necessary. Building the suitable design and development
environments for the specification carrying self-adaptive software will require a
mathematical framework with some nonstandard features. In the present paper,
a crude, initial picture of some of these features is outlined. Section 2 describes
the structure and the intended interpretation of an abstract category of specifi-
cation carrying modules. This can be viewed as a first attempt at denotational
semantics of such bipartite modules, involving a structural and a behavioral com-
ponent. Section 3 briefly outlines the structures needed for a dynamic view of
the adaptation process, and the way to adjoin them in the described semantical
framework.

! The idea of adding abstract logical annotations to code can be seen as a gener-
alization of Necula and Lee’s [12] combination of proof-carrying-code and certifying
compilers. While mainly concerned with the security properties of mobile code, many
of the ideas that arose in that work do seem to apply in general, and provide evidence
for the imminent realizability of the present ideas.

2 Category of specification carrying programs

As the name suggests, a specification carrying program consists of a program P,
a specification S, and a satisfaction, or model relation = which tells how they
“carry” each other, i.e. establishes the sense in which P satisfies S. Formally, a
specification carrying program is thus a triple (P, |=, S).

But what precisely are P, |=, and S? In principle, a formal specification
S is a logical theory in a generic specification language (e.g., the higher-order
predicate logic). A program P, on the other hand, here means a description
of a computational behaviour in one of the available formalisms: it can be a
transition system, an automaton, or simply a piece of code in a sufficiently
general programming language. Finally, the satisfaction relation ¢ |= v tells
which of the formulas ¢ of S are satisfied at each of the states q of P.

Although diverse formalisms can be used for the particular presentations of
P and S, they can always be uniformly represented as categories. The classifying
categories P and S are derived respectively from the program P and the speci-
fication S using the known procedures of operational semantics and categorical
model theory. The satisfaction relation = then becomes a functor from P x S.

But we shall not attempt to present this abstract framework directly, but
rather begin by motivating its main features and the underlying ideas, especially
as they arise in extant frameworks. Some of the underlying mathematics will be
outlined, but the details are beyond the scope of this presentation.

2.1 Contracts: the game of refinement and adaptation

Intuitively, an adaptive module (P, =, S) can be thought of as a contract be-
tween a programmer and a client: the client specifies the requirements in S, and
the programmer provides the program P in response. This intuition yields a
conceptual basis for the discipline and theory of software refinement [1,11].

The process of software adaptation can now be viewed as a game played
between the client and the programmer: the former refines the specification S,
say to S’, and the latter tries to respond accordingly by adapting the program
P to P’ accordingly, i.e. in such a way that the satisfaction |= is preserved. This
means that a predicate ¢ from S should be satisfied in a state g of P if and only
if the translation ¢’ of ¢ to S’ is satisfied in all states ¢’ of P’ that simulate the
state q.

In summary, an adaptation transformation of (P, |=,S) into (P', ', S') con-
sists of

— a simulation P ¢~ P', and
— an interpretation S ELN S,

such that for all predicates ¢ in .S and all states ¢’ in P’ holds

¢ E fs(p) <= frd)Ee (1)

The pair f = (fp, fs), satisfying (1), is an adaptation morphism
(P, 5) s (P, E,5')

An abstract semantical framework for software adaptation is thus given by the
category C of specification carrying programs, viewed as contracts C = (P¢, =
,Sc), with the adaptation morphisms between them.

Contracts as intervals. Note that the morphism f : (P, =, S) — (P',|=,S")
is running concurrently with the specification refinement fs : S — S’, but
in the opposite direction from the simulation fp : P’ — P. An imprecise,
yet instructive analogy is that a contract (P,|=,S) can be thought of as a real
interval [p, s]. The desired software functionality, that S and P are approximating
in their different ways, then corresponds to a point, or an infinitely small interval
contained between p and s. The refinement/adaptation game of the client and
the programmer now becomes an interactive search for greater lower bounds p,
and smaller upper bounds s, i.e. for smaller and smaller intervals, nested in each
other, all containing the desired point. This process brings the programs and
their specifications closer and closer together, so that they better approximate
the desired functionality from both sides, i.e. in terms of the behavior and the
structure. Viewed in this way, an adaptation morphism becomes like a formal
witness of the interval containment

p,s] 2 [p',s'] <= p<p'As' <5

The morphism (P, |=,S) — (P',[=',S’) thus corresponds to the containment
[p,s] D [p',s'], the interpretation S — S’ to the relation s > s’, and the
simulation P’ — P to p' > p.

Of course, the analogy breaks down on the fact that a specification S and a
program P are objects of different types. Nevertheless, the satisfaction relation
= measures “the distance” between P and S, and the mathematical structures
arising from refinement/adaptation remain similar to those encountered in ap-
proximating numbers by intervals. In spite of its imprecision, the metaphor re-
mains instructive. Moreover, the view of S and P as the approximations of an
ideal point where the program is optimally adapted to the specification, does
seem conceptually correct. To better approximate this point, S prescribes a
minimum of structure necessary for expressing some part of the desired func-
tionality, whereas P provides the simplest behaviour sufficient for implementing
it. The client’s strategy is to refine S to S’ along fs : S — S’, to constrain
the input/output requirements more, and make programmer’s task harder. The
programmer, on the other hand, must enrich the behaviour P to P’, in order
to better fit the task. This means that P’ must at least be able to simulate P,
along fp: P' — P.

In any case, the client provides the input/output requirements S, whereas
the programmer supplies in P the computation steps transforming the inputs
to the outputs. Semantically speaking, the structural, “upper bound” descrip-
tions of software are thus driven by its denotational aspects, viz the structure

of the datatypes and the functions that need to be refined and implemented.
This is summarized in a spec S. On the other hand, a “lower bound” description
of a desired piece of software is driven by its operational aspects, and in our
particular case by the behaviour of a given implementation P, that needs to
be adapted, or optimized for better performance. While conceptually different,
the structural/denotational and the behavioural /operational aspects can be cap-
tured in a uniform setting [22], which would perhaps make the idea of contracts
as intervals more convincing for some readers, or at least give the “intervals”
a more familiar appearance. However, as they stand, specification carrying pro-
grams can be represented and implemented using mostly the readily available
semantical frameworks, on the basis of the extant specification and programming
environments.

2.2 Example: adaptive sorting

To give the reader an idea of what a concrete specification carrying module
looks like, and how it adaptats on the fly, we sketch an (over)simplified example,
based on the material from [23,24]. We describe how a sorting module can be
automatically reconfigured in response, say, to the observed distributions of the
input data.

Suppose that sorting is done by a Divide-and-Conquer algorithm, e.g. Quick-
sort, or Mergesort. The idea of the Divide-and-Conquer sorting is, of course, to
decompose (“divide”) the input data, sort the parts separately, and then com-
puse (“conquer”) them into a sorted string. The abstract scheme is:

AN
]

d—

|

IX]———0x0
s§Xs

c

In words, there are two sorts, I for the inputs and O for the outputs, and the
desired sorting function s maps one to the other. In principle, I should be the
type of bags (multisets) over a linear order, whereas O are the ordered sequences,
with respect to the same order. The constants ¢ : I and o : O are used to denote
a particular input and the induced output. The bars over the arrows for d and
c mean that they are relations, rather than functions. They should satisfy the
requirements that

— if d(z,y, 2), then © =y + z, and
— if ¢(w,y, 2), then |z| + |y| = ||

where + is the union of bags, and | — | maps sequences to the underlying bags.
Although they are not functional, these relations are directed by the data flow.
That is why they are denoted by the arrows.

The formal specification Spc of the divide-and-conquer algorithms will thus
look something like

spec Divide-and-Conquer[(S,<): Linear-0Order]

imports
bag(S),
ordered-seq(S)

sorts
I = bag(S),
0 = oredered-seq(S)

operations
s:1->0,
d:I,I,I -> Bool,
c:0,0,0 -> Bool

axioms
d(x,y,z) =>x =y + z,
c(x,y,z) => Ix| + |yl = |zl,
d(x,y,z) /\ c(s(y),s(z@),w) => s(x) = w
endspec

An abstract program Ppc, partially implementing Spc can now be repre-
sented as the transition system

where do(z) and d;(x) denote any bags satisfying d(z,do(z),d;(z)). In a way,
the state ¢ hides the implementation of d and ¢, whereas ¢y and ¢; hide the
implementation of the sorting of the parts.

The theorems of Sp¢ are satisfied at all states: they are the invariants of the
computation. The transitions from state to state induce the interpretations of
the specification Spc in itself, mapping e.g. i > do(4) in one case, or s(dp(i)) — o
in another. They all preserve the invariants, viz the theorems of Spc, of course.

The satisfaction relation =pc tells, moreover, for each particular state, which
additional predicates, besides the theorems of Spc, have been made true by the
executed computational steps, viz the substitutions in Spc.

The suitable refinements of Spc yield the specifications Sgs of Quicksort
and Syss of Mergesort. As explained in [23,24],

— taking d(z,y,z) <= x =y + z implies that ¢(z,y, z) must mean that z is
a merge of x and y — which yields Mergesort, whereas

— taking c(z,y,z) <= zQy = z implies that d(z,y,z) must mean that y
and z are a partition of x, such that all elements of y are smaller than every
element of z — which yields Quicksort.

Implementing Sgs and Syss, one can synthesize executable programs Pgs and
Pyrs. While the specifications come with the interpretations Spc — Sgs and
Spc — Swms, the programs come with the simulations Pps — Ppc and
Pys — Ppe, showing how the implementations hidden in Ppc have been
realized.

All together, we now have three contracts, DC, QS and M .S, with two adap-
tation morphisms between them.

Spc

SQS SMS

Ppc

Pgs Pys

This sorting module can thus run in one of the two modes: Quicksort or Merge-
sort, and adapt, when needed, between one and the other. At each point of
time, though, only one of them needs to be present, since the other can be au-
tomatically generated when needed. The module can be set up to monitor its
performance, and reconfigure when it falls below some treshold.

Suppose that the module is running as Quicksort, and the input data are
coming in almost sorted, which brings it close to the worst-case behavior. The
adaptive interpreter aligns Pgg and Sgg, observes that 98% of the computation
time is spent on the divide routine d, and decides to simplify it. It generalizes
from Sgs to Spc, and chooses the simplest possible d, namely

d(z,y,z) <= z=y+=2

The theorem prover can now derive that ¢ must be merge, and thus automatically
refines Spo to Sprs- Since Sprs completely determines the algorithm, the code

generator can now synthesize Pyss in a chosen language. The adaptation path
was thus
PQS — SQS — SDC — SMS — Pyrs

Of course, in this simple case, the reconfiguration between the two modes
could be achieved within a program, with a Quicksort and a Mergesort block. One
could build in a performance monitor into the program, maintain its statistics,
and then, depending on it, branch to one of the sorting blocks, more suitable for
the observed input distributions.

However, the real-life examples, that genuinely require self-adaptation [21],
often involve choice between modules too large to be loaded together. One can,
furthermore, easily envisage situations when modules couldn’t even be stored
together, either because of their sizes, or because of their large numbers. With
the advent of the agent technologies, there are already situations when there are
infinitely many logically possible modes of operation, among which one might
profitably choose on the fly. With the current level of the program synthesis
techniques, of course, this approach would be very hard to realize. Conceptually,
however, it seems to be well within reach, and developing the techniques needed
for realizing it is a very attractive challenge.

2.3 Institutions, and satisfaction as payoff

The bipartite setting of specifications coupled with programs via a satisfaction
relation will probably not appear unfamiliar to the categorically minded mem-
bers of the software specification community. They will recognize the category
C of contracts as conceptually related to institutions, although not in all details.
An institution is a very general model theoretic framework. introduced by
Goguen and Burstall in [3], and pursued by many others in several different
forms. Its main purpose was to fill a conceptual gap in semantics of software.
While the formal methods of software engineering are in principle based on
universal algebra and model theory, with specifications statically describing some
computational structures, programs at large are dynamic objects, they change
state, and behave differently in different states. And while the mathematical
theories completely determine the classes of their static models, as well as the
notion of homomorphism between them, the software specifications do not pin
down the programs that realize them?. In model theory, the Tarskian satisfaction
relation |= is a fixed, primitive concept; in theory of software specifications, on
the other hand, there are many degrees of freedom in deciding what does it
mean for a program to satisfy a specification, in particular with respect to its
operational behaviour. It is then reasonable to display an abstract satisfaction
relation |= as a structural part of an institution, that can be varied together with
theories and models, while stipulating which models satisfy which theories.?

2 Not in the sense that all programs implementing a specification can be effectively
derived from the specification, like all mathematical models of a theory, and indeed
the whole model category, are effectively determined by the theory.

% Institutions thus bridge the gap between static theories and dynamic models by
allowing the abstract satisfaction relation to vary. Another way to bridge this gap

Following this conceptual lead, the satisfaction relation can be generalized
from an ordinary relation, where ¢ |= 1 is evaluated as true or false, to an M-
valued relation, where ¢ = ¢ can be any element of a distributive lattice, or
a suitable category, say M, measuring the degree to which the condition v is
satisfied at the state g.

In standard game theoretic terms, the relation = now becomes the payoff
matrix, displaying the value of each programmer’s response to each client’s call.
Indeed, if the formulas of S are understood as the set of moves (or strategies®)
available to the client, and the moves available to the programmer are identified
with the states of P, then the satisfaction = becomes an P x S-matrix of the
elements of M, i.e. a map

E:PxS—M 2)

assigning the payoff to each pair (g, ®). It can be understood, say, as displaying
programmer’s gains for each combination of the moves, and the game acquires
the usual von Neumann-Morgenstern form, with the client trying to minimize
and the programmer to maximize this gain. The intuitive and logical meaning
of the pairs of arrows in opposite directions, like in the adaptation morphisms,
has been analyzed in this context in [6], connecting games, linear logic and the
Chu construction.

In any case, semantics of specification carrying programs must draw ideas
and structures from sources as varied as institutions and game theory, although
the goals and methods in each case differ essentially. On the level of abstract
categories, both institutions and specification carrying programs can be analyzed
along the lines of the mentioned Chu construction [2,14,19]. The lax version
[13] is also interesting, capturing the situation when adaptation may not just
preserve, but also improve the satisfaction relation between the program and
the specification. This corresponds to relaxing in (1) the equivalence <= to
the implication <=. If |= and |=" are taken to be general M-valued relations, or
payoff matrices, as in (2), a morphism f : (P,|=,S) — (P’, |, S’) improving
satisfaction will be a triple f = (fp, fi, fs), consisting of

~ a simulation P <% P,

— an interpretation S I3, g , and
— for each ¢’ € P' and ¢ € S an arrow

fi=
(fr(d) E) == (¢ ' fs(@®)) (3)
in M, with the suitable naturality condition.

is to introduce dynamics into theories. This is one of the ideas behind Gurevich’s
Abstract State Machines (formerly known as evolving algebras) [4].
% the distinction is of no consequence here

2.4 Towards functorial semantics of contracts

In order to express the above naturality condition, or work out a generic repre-
sentation of the category C of contracts, one needs to present the specifications,
and the programs in terms of their respective classifying categories.

Given a specification S, say as a theory in a predicate logic, the objects of
the induced classifying category S will be the well-formed formulas of .S, modulo
the renaming of variables (a-conversion). The arrows are the functional relations
definable in S, modulo the provability. For instance, take formulas a(x) and 8(y)
in S, as the representatives of objects in S. By renaming, we can achieve that
their arguments @ and y are disjoint. An S-arrow from a(x) to f(y) will be a
predicate ¥(x,y), such that

Iz, y) Falz) AB(y)
a(x) F Jy. ¥Hz,y)
W, y') ANz, y") Fy' =y

can be proved in S. The arrows of S thus capture the theorems of S, whereas
the objects capture the language. More details can be found in [17].

The point of presenting a theory S as a category S is that the models of S can
be obtained as the functors S — Set, preserving the logical structure. This is
the essence of functorial semantics [7], and the foundation of categorical model
theory [8,9]. The applications to software engineering are discussed in [17].

Related, more direct, but less uniform procedures allow deriving categories
from programs. They usually go under the name of operational semantics [18,
25], and come in too many varieties to justify going into any detail here.

Assuming that a specification S and a program P have been brought into a
categorical form, and presented as classifying categories S and [P, the satisfaction
relation |=: S x P — M will transpose to a structure preserving functor S —
MP. When the category M, measuring satisfaction, is taken to be the category
Set of sets and functions, = will thus amount to a model of S in the universe
Set” of sets varying from state to state in P. A logically inclined reader may be
amused to spend a moment unfolding the definition of adaptation morphisms in
this model theoretic context, and confincing herself that such morphisms indeed
preserve the given sense in which a program satisfies specification, or improve it
along the suitable homomorphisms of models.

In any case, the naturality condition on the third component of the adapta-
tion morphisms as defined the preceding section can now be expressed precisely,

on the diagram displaying the involved composite functors.

id
P’ x S$>P’ x S’
fp)(id f}=‘ =
PxS M

3 Adaptive interpreter as coalgebra

While the described category of contracts, implemented and supported by suit-
able tools, provides the structural framework for software adaptation, it still does
not provide a special handle for automated, on-the-fly adaptation and reconfigu-
ration. The dynamics of self-adaptive software requires an additional dimension,
to be added to in the actual implementation of the specification carrying mod-
ules. The main issue thus remains: how to implement an adaptive interpreter,
able to compute with self-adaptive, specification carrying modules?
Given a contract (P, |=, S}, the adaptive interpreter should be able to:

— evaluate P,

— test whether the results satisfy S,

adapt P, or assist program transformation P +— P’,
— support refinement S — S’.

In a standard setting, the denotation of a program P is a function p: A —
B, where A and B are the types of the input and the output data, respectively.
An adapted program P’ will yield a function p' : A — B (where we are ignoring,
for simplicity, the fact that the data types A and B can be refined). If adaptation
is viewed as a computational process, all the instances of an adapted function
that may arise can be captured in the form

p:XYxA—B

where Y is the carrier of adaptation, probably a monoid, or a partial order. The
stages of the adaptation o,0’ ... € X can be associated with the successive refine-
ments S,S’... of the specification of the adaptive program, and will be derived
from them by one of the model theoretic methods developed for this purpose
(i.e. as the “worlds”, or the forcing conditions induced by the refinement).?

® The stages of adaptation should not be confused with the computational states,
through which the execution of a program leads. The execution runs of a program
from state to state are, in a sense, orthogonal to its adaptation steps from stage to
stage.

All the instances p,p'...: A — B of the adaptive function will now arise

by evaluating p at the corresponding stages o,0' ... € X, viz
p(x) = plo, z)
p'(z) =plo',x)

In this way, the process of adaptation is thus beginning to look like a rudimentary
dynamic system. The process of self-adaptation will, of course, be a system with
the feedback

p:YxA—BxX

computing at each stage o € X and for each input € A not only the output
y = po(o,z) € B, but also the next stage ¢’ = pi(o,z) € X, with a better
adapted function p'(z) = p(o’, z). Extended in this way along the coordinate of
adaptation, the specification carrying programs viewed as contracts come in the
form

E:YxSxP—MxJX

The predictable adaptatiog\ stages are structured in X' and controlled by the
resumption component of |=. Alternatively, automated adaptation steps can be
encapsulated in specifications and programs themselves, by individually extend-
ing the particular functions from stage to stage.

Independently on the level on which it may be captured, the denotation of a
self-adaptive function will in any case be a transducer p. Transposing it into a
coalgebra

p:¥— (Bx)4

brings with it the advantage that the behaviour preserving maps now arise auto-
matically, as coalgebra homomorphisms. (Instructive examples and explanations
of this phenomenon can be found, e.g. in [20].) But even more importantly, it
allows a considerably more realistic the picture, since it also allows introducing
various computational monads T on the scene. A coalgebra in the form

pr: X — (T(Bx X)*

captures an adaptive family of computations involving any of the wide range of
features (nondeterminism, exceptions, continuations. ..) expressible by monads
[10].

In any case, combining monads and coalgebra will ensure a solid semantical
foundation not just for adaptive interpreters, but also for implementing the de-
sign environments for self-adaptive software. Explaining either of these theories
is far beyond our scope here, but monads seem to have been established as a
part of the standard toolkit of functional programmers, and the material about
them abunds. Some coalgebraic techniques for implementing processes have been
presented in [5,15, 16].

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. R.-J. Back and J. Von Wright, The Refinement Calculus: A Systematic Introduc-

tion. (Springer 1998)

. M. Barr, #-Autonomous Categories. Lecture Notes in Mathematics 752 (Springer,

1979)
J.A. Goguen and R.M. Burstall, Institutions: abstract model theory for specifica-
tions and programming. J. of the A.C.M. 39(1992) 95-146

. Y. Gurevich, Evolving algebras 1993: Lipari guide. In: Specification and Validation

Methods, ed. E. Borger, (Claredon Press 1995) 9-37

B. Jacobs, Coalgebraic specifications and models of deterministic hybrid systems.
In: Proc. AMAST, ed. M. Nivat, Springer Lect. Notes in Comp. Sci. 1101(1996)
520-535

Y. Lafont and T. Streicher, Games semantics for linear logic. Proc 6** LICS Conf.
(IEEE 1991) 43-49

F.W. Lawvere, Functorial Semantics of Algebraic Theories. Thesis (Columbia Uni-
versity, 1963)

M. Makkai and R. Paré, Accessible Categories: The Foundations of Categorical
Model Theory. Contemporary Mathematics 104 (AMS 1989)

M. Makkai and G. Reyes, First Order Categorical Logic. Lecture Notes in Mathe-
matics 611 (Springer 1977)

E. Moggi, Notions of computation and monads. Information and Computation 1993
C. Morgan, Programming from Specifications. (Prentice-Hall 1990)

G.C. Necula, Compiling with Proofs. Thesis (CMU 1998)

V.C.V. de Paiva, The Dialectica categories. In: Categories in Computer Science
and Logic, J. Gray and A. Scedrov, eds., Contemp. Math. 92 (Amer. Math. Soc.,
1989) 47-62

D. Pavlovic, Chu I: cofree equivalences, dualities and #-autonomous categories.
Math. Structures in Comp. Sci. 7(1997) 49-73

D. Pavlovic, Guarded induction on final coalgebras. E. Notes in Theor. Comp. Sci.
11(1998) 143-160

D. Pavlovic and M. Escardo, Calulus in coinductive form. Proc 18 LICS Conj.
(IEEE 1998) 408-417

D. Pavlovic, Semantics of first order parametric specifications. in: Formal Methods
799, J. Woodcock and J. Wing, eds., Springer Lect. Notes in Comp. Sci. 1708(1999)
155-172

G. Plotkin, Structural Operational Semantics. Lecture Notes DAIMI-FN 19(1981)
V. Pratt, Chu spaces and their interpretation as concurrent objects. In: Computer
Science Today: Recent Trends and Developments, ed. J. van Leeuwen, Springer
Lect. Notes in Comp. Sci. 1000(1995)

J.J.M.M. Rutten, Universal coalgebra: a theory of systems. To appear in Theoret.
Comput. Sci.

J. Sztipanivits, G. Karsai and T. Bapty, Self-adaptive software for signal process-
ing. Comm. of the ACM 41/5(1998) 66—73

D. Turi and G.D. Plotkin, Towards a mathematical operational semantics. In: Proc.
12" LICS Conf. (IEEE 1997) 280-291

D.R. Smith, Derivation of parallel sorting algorithms. In: Parallel Algorithm
Derivation and Program Transformation, eds. R. Paige et al. (Kluwer 1993) 55-69
D.R. Smith, Towards a classification approach to design. In: Proc. 5" AMAST,
Springer Lect. Notes in Comp. Sci. 1101(1996) 62-84

25. G. Winskel and M. Nielsen, Presheaves as transition systems. In: Proc. of POMIV
96, DIMACS Series in Discrete Mathematics and Theoretical Computer Science
(AMS 1997) 129-140

