
Towards semanti
s of self-adaptive software

Du�sko Pavlovi�

Kestrel Institute, Palo Alto, USA

dusko�kestrel.edu

Abstra
t. When people perform
omputations, they routinely moni-

tor their results, and try to adapt and improve their algorithms when

a need arises. The idea of self-adaptive software is to implement this

ommon fa
ility of human mind within the framework of the standard

logi
al methods of software engineering. The ubiquitous pra
ti
e of test-

ing, debugging and improving programs at the design time should be

automated, and established as a
ontinuing run time routine.

Te
hni
ally, the task thus requires
ombining fun
tionalities of au-

tomated software development tools and of runtime environments. Su
h

ombinations lead not just to
hallenging engineering problems, but also

to novel theoreti
al questions. Formal methods are needed, and the stan-

dard te
hniques do not suÆ
e.

As a �rst
ontribution in this dire
tion, we present a basi
 math-

emati
al framework suitable for des
ribing self-adaptive software at a

high level of semanti
al abstra
tion. A stati
 view leads to a stru
ture

akin to the Chu
onstru
tion. An dynami
 view is given by a
oalgebrai

presentation of adaptive transdu
ers.

1 Introdu
tion: spe
i�
ation
arrying
ode

One idea towards self-adaptive software is, very roughly, to introdu
e some kind

of \formalized
omments", or Floyd-Hoare style annotations as �rst
lass
it-

izens of programs. Together with the exe
utable statements, they should be

made available to a generalized, adaptive interpreter, extended by an automated

spe
i�
ation engine (e.g., Spe
ware

TM

-style), supported by theorem provers

and
ode generators. This adaptive interpreter would not only evaluate the exe-

utable statements, but also systemati
ally test how their results and behaviour

satisfy the requirements spe
i�ed in the formal annotations. Su
h testing data

ould then be used for generating improved
ode, better adapted to the spe
-

i�
ations, often on the
y. On the other hand, the formal spe
i�
ations
ould

often also be re�ned, i.e. adapted to the empiri
 data obtained from testing a

parti
ular implementation.

1.1 Automated testing and adaptation

Coupling programs with their spe
i�
ations in a uniform, automati
ally sup-

ported framework would, at the very least, allow monitoring
orre
tness, relia-

bility, safety and liveness properties of programs, with respe
t to the spe
i�ed

requirements, as well as the parti
ular distribution of the input data, and any

other aspe
ts of the exe
ution environment that may be
ome available at run

time.

In some
ases, one
ould hope for more than mere monitoring of the relation-

ship between an abstra
t spe
i�
ation and its implementation. Indeed, software

an often be improved and adapted to its spe
i�
ations in a predi
table fash-

ion, on
e its running behaviour
an be observed on
on
rete inputs. This is, for

instan
e, usually possible in the
ases when the
orre
tness
riteria are not ab-

solute, viz when the software only approximates its spe
i�
ation. Software that

models physi
al systems, or sto
hasti
 pro
esses, or even just
omputes genuine

real numbers or fun
tions, is usually of this kind: the in�nitary nature of the

output data pre
ludes the exa
t solutions, whi
h
an only be approximated. But

the approximations
an, in prin
iple, always be improved, on an additional
ost.

Comparing the a
tual runs of su
h software with its abstra
t spe
i�
ations may

suggest optimizing this
ost, say, by adjusting the
oeÆ
ients in the numeri

formulas to the observed distribution of the input data. In some
ases, di�erent

distributions may even justify applying di�erent algorithms, whi
h
an be ab-

stra
tly
lassi�ed in advan
e, so that the adapted
ode
an be synthesized on

the
y.

Self-adaptive software
an perhaps be
ompared with an engineer monitoring

the results of his
omputations, updating the methods and re�ning the model.

The point is here that a part of this pro
ess of adaptation
an and needs to be

automated.

1.2 Dynami
 assembly and re
on�guration

Furthermore, in a
omplex software system, the adaptation
y
le of a software

omponent
an take into a

ount not only the run time behaviour of the
om-

ponent itself, but also the behaviour of the other
omponents, and the
hanges

in the environment at large.

In order to be
ombined, software modules must
ontain suÆ
ient informa-

tion about their stru
ture and behavior. Conventional appli
ation programming

interfa
es, APIs, are intended to
arry su
h information but APIs are usually

under-spe
i�ed (they
ontain just signature/type information), are often based

on unful�lled assumptions, and are prone to
hange. Conventional APIs are thus

insuÆ
ient for the task of assured
omposition.

Ideally, APIs would
ompletely
apture all assumptions that in
uen
e behav-

ior. However, formally verifying su
h
ompleteness is usually infeasible | some

degree of API partiality is inevitable in pra
ti
al software development. Nev-

ertheless, in dynami
ally adaptable software, API partiality should
ontinually

de
rease as the interfa
es evolve during the lifetime of a system, together with

the spe
i�
ations and implementations of its
omponents and perhaps even its

ar
hite
ture.

We believe that the requirement of dynami
ally adaptable software naturally

leads to the idea of spe
i�
ation-
arrying
ode: an adaptable program must

arry a
urrent spe
i�
ation of its fun
tionality, an adaptable spe
i�
ation must

ome with a partial implementation. Adaptability requires a simultaneous and

intera
tive development of the logi
al stru
ture and the operational behavior.

Moreover, spe
i�
ation-
arrying
ode is the way to a

ommodate and sup-

port, rather than limit and avoid, the ri
h dynami
s of ever
hanging interfa
es,

so often experien
ed in large software systems, with the unpredi
table intera
-

tions arising from the ever
hanging environments. The fa
t that spe
i�
ations,

implementations, interfa
es and ar
hite
tures in prin
iple never stop
hanging

during their lifetime, should not be taken as a nuisan
e, but re
ognized as the

essen
e of the game of software, built into its semanti
al foundation, and imple-

mented as a design, and when possible a runtime routine.

Of
ourse, adjusting the behaviour of autonomous software
omponents to

ea
h other, tuning them in on the basis of their behaviour, or getting them to

intera
t in a desired way,
an be a very hard task. But if their abstra
t spe
i�-

ations in a generi
 language are maintained on a suitable formal platform, and

kept available at run time, their possible intera
tions and joint
onsisten
y
an

be analyzed absta
tly, e.g. using theorem provers, and their implementations
an

be modi�ed towards a desired joint behaviour. This may involve reimplementing,

i.e. synthesizing new
ode on the
y, and is
ertainly not a straightforward task.

However, it seems unavoidable for the independently implemented
omponents,

ne
essary for the
ompositional development of systems | and we believe that

it is also within the rea
h of the
urrent software synthesis te
hnologies.

1

In any
ase, a software system that needs to adapt its
ode and behaviour

the run time data, or to the
hanges of the environment, while maintaining its

essential fun
tionality, will surely need to
arry and maintain a spe
i�
ation of

this fun
tionality in some form, perhaps in
luding a history re
ord, and a
ur-

rent
orre
tness
erti�
ate. Sin
e this task, and the stru
tures involved,
learly

go beyond the existing software methodologies, a
areful analysis of the semanti-

al repre
ussions seems ne
essary. Building the suitable design and development

environments for the spe
i�
ation
arrying self-adaptive software will require a

mathemati
al framework with some nonstandard features. In the present paper,

a
rude, initial pi
ture of some of these features is outlined. Se
tion 2 des
ribes

the stru
ture and the intended interpretation of an abstra
t
ategory of spe
i�-

ation
arrying modules. This
an be viewed as a �rst attempt at denotational

semanti
s of su
h bipartite modules, involving a stru
tural and a behavioral
om-

ponent. Se
tion 3 brie
y outlines the stru
tures needed for a dynami
 view of

the adaptation pro
ess, and the way to adjoin them in the des
ribed semanti
al

framework.

1

The idea of adding abstra
t logi
al annotations to
ode
an be seen as a gener-

alization of Ne
ula and Lee's [12℄
ombination of proof-
arrying-
ode and
ertifying

ompilers. While mainly
on
erned with the se
urity properties of mobile
ode, many

of the ideas that arose in that work do seem to apply in general, and provide eviden
e

for the imminent realizability of the present ideas.

2 Category of spe
i�
ation
arrying programs

As the name suggests, a spe
i�
ation
arrying program
onsists of a program P ,

a spe
i�
ation S, and a satisfa
tion, or model relation j= whi
h tells how they

\
arry" ea
h other, i.e. establishes the sense in whi
h P satis�es S. Formally, a

spe
i�
ation
arrying program is thus a triple hP; j=; Si.

But what pre
isely are P , j=, and S? In prin
iple, a formal spe
i�
ation

S is a logi
al theory in a generi
 spe
i�
ation language (e.g., the higher-order

predi
ate logi
). A program P , on the other hand, here means a des
ription

of a
omputational behaviour in one of the available formalisms: it
an be a

transition system, an automaton, or simply a pie
e of
ode in a suÆ
iently

general programming language. Finally, the satisfa
tion relation q j= tells

whi
h of the formulas of S are satis�ed at ea
h of the states q of P .

Although diverse formalisms
an be used for the parti
ular presentations of

P and S, they
an always be uniformly represented as
ategories. The
lassifying

ategories P and S are derived respe
tively from the program P and the spe
i-

�
ation S using the known pro
edures of operational semanti
s and
ategori
al

model theory. The satisfa
tion relation j= then be
omes a fun
tor from P� S.

But we shall not attempt to present this abstra
t framework dire
tly, but

rather begin by motivating its main features and the underlying ideas, espe
ially

as they arise in extant frameworks. Some of the underlying mathemati
s will be

outlined, but the details are beyond the s
ope of this presentation.

2.1 Contra
ts: the game of re�nement and adaptation

Intuitively, an adaptive module hP; j=; Si
an be thought of as a
ontra
t be-

tween a programmer and a
lient: the
lient spe
i�es the requirements in S, and

the programmer provides the program P in response. This intuition yields a

on
eptual basis for the dis
ipline and theory of software re�nement [1, 11℄.

The pro
ess of software adaptation
an now be viewed as a game played

between the
lient and the programmer: the former re�nes the spe
i�
ation S,

say to S

0

, and the latter tries to respond a

ordingly by adapting the program

P to P

0

a

ordingly, i.e. in su
h a way that the satisfa
tion j= is preserved. This

means that a predi
ate ' from S should be satis�ed in a state q of P if and only

if the translation '

0

of ' to S

0

is satis�ed in all states q

0

of P

0

that simulate the

state q.

In summary, an adaptation transformation of hP; j=; Si into hP

0

; j=

0

; S

0

i
on-

sists of

{ a simulation P

f

P

 � P

0

, and

{ an interpretation S

f

S

�! S

0

,

su
h that for all predi
ates ' in S and all states q

0

in P

0

holds

q

0

j=

0

f

S

(') () f

P

(q

0

) j= ' (1)

The pair f = hf

P

; f

S

i, satisfying (1), is an adaptation morphism

hP; j=; Si

f

�! hP

0

; j=

0

; S

0

i

An abstra
t semanti
al framework for software adaptation is thus given by the

ategory C of spe
i�
ation
arrying programs, viewed as
ontra
ts C = hP

C

; j=

C

; S

C

i, with the adaptation morphisms between them.

Contra
ts as intervals. Note that the morphism f : hP; j=; Si �! hP

0

; j=; S

0

i

is running
on
urrently with the spe
i�
ation re�nement f

S

: S �! S

0

, but

in the opposite dire
tion from the simulation f

P

: P

0

�! P . An impre
ise,

yet instru
tive analogy is that a
ontra
t hP; j=; Si
an be thought of as a real

interval [p; s℄. The desired software fun
tionality, that S and P are approximating

in their di�erent ways, then
orresponds to a point, or an in�nitely small interval

ontained between p and s. The re�nement/adaptation game of the
lient and

the programmer now be
omes an intera
tive sear
h for greater lower bounds p,

and smaller upper bounds s, i.e. for smaller and smaller intervals, nested in ea
h

other, all
ontaining the desired point. This pro
ess brings the programs and

their spe
i�
ations
loser and
loser together, so that they better approximate

the desired fun
tionality from both sides, i.e. in terms of the behavior and the

stru
ture. Viewed in this way, an adaptation morphism be
omes like a formal

witness of the interval
ontainment

[p; s℄ � [p

0

; s

0

℄ () p � p

0

^ s

0

� s

The morphism hP; j=; Si �! hP

0

; j=

0

; S

0

i thus
orresponds to the
ontainment

[p; s℄ � [p

0

; s

0

℄, the interpretation S �! S

0

to the relation s � s

0

, and the

simulation P

0

�! P to p

0

� p.

Of
ourse, the analogy breaks down on the fa
t that a spe
i�
ation S and a

program P are obje
ts of di�erent types. Nevertheless, the satisfa
tion relation

j= measures \the distan
e" between P and S, and the mathemati
al stru
tures

arising from re�nement/adaptation remain similar to those en
ountered in ap-

proximating numbers by intervals. In spite of its impre
ision, the metaphor re-

mains instru
tive. Moreover, the view of S and P as the approximations of an

ideal point where the program is optimally adapted to the spe
i�
ation, does

seem
on
eptually
orre
t. To better approximate this point, S pres
ribes a

minimum of stru
ture ne
essary for expressing some part of the desired fun
-

tionality, whereas P provides the simplest behaviour suÆ
ient for implementing

it. The
lient's strategy is to re�ne S to S

0

along f

S

: S �! S

0

, to
onstrain

the input/output requirements more, and make programmer's task harder. The

programmer, on the other hand, must enri
h the behaviour P to P

0

, in order

to better �t the task. This means that P

0

must at least be able to simulate P ,

along f

P

: P

0

�! P .

In any
ase, the
lient provides the input/output requirements S, whereas

the programmer supplies in P the
omputation steps transforming the inputs

to the outputs. Semanti
ally speaking, the stru
tural, \upper bound" des
rip-

tions of software are thus driven by its denotational aspe
ts, viz the stru
ture

of the datatypes and the fun
tions that need to be re�ned and implemented.

This is summarized in a spe
 S. On the other hand, a \lower bound" des
ription

of a desired pie
e of software is driven by its operational aspe
ts, and in our

parti
ular
ase by the behaviour of a given implementation P , that needs to

be adapted, or optimized for better performan
e. While
on
eptually di�erent,

the stru
tural/denotational and the behavioural/operational aspe
ts
an be
ap-

tured in a uniform setting [22℄, whi
h would perhaps make the idea of
ontra
ts

as intervals more
onvin
ing for some readers, or at least give the \intervals"

a more familiar appearan
e. However, as they stand, spe
i�
ation
arrying pro-

grams
an be represented and implemented using mostly the readily available

semanti
al frameworks, on the basis of the extant spe
i�
ation and programming

environments.

2.2 Example: adaptive sorting

To give the reader an idea of what a
on
rete spe
i�
ation
arrying module

looks like, and how it adaptats on the
y, we sket
h an (over)simpli�ed example,

based on the material from [23, 24℄. We des
ribe how a sorting module
an be

automati
ally re
on�gured in response, say, to the observed distributions of the

input data.

Suppose that sorting is done by a Divide-and-Conquer algorithm, e.g. Qui
k-

sort, or Mergesort. The idea of the Divide-and-Conquer sorting is, of
ourse, to

de
ompose (\divide") the input data, sort the parts separately, and then
om-

puse (\
onquer") them into a sorted string. The abstra
t s
heme is:

1

i

||zz
zz

zz
zz

z
o

""FF
FFF

FF
FF

I

�

d

��

s

//
O

I � I

s�s

//
O �O

�

OO

In words, there are two sorts, I for the inputs and O for the outputs, and the

desired sorting fun
tion s maps one to the other. In prin
iple, I should be the

type of bags (multisets) over a linear order, whereas O are the ordered sequen
es,

with respe
t to the same order. The
onstants i : I and o : O are used to denote

a parti
ular input and the indu
ed output. The bars over the arrows for d and

 mean that they are relations, rather than fun
tions. They should satisfy the

requirements that

{ if d(x; y; z), then x = y + z, and

{ if
(x; y; z), then jxj+ jyj = jzj

where + is the union of bags, and j � j maps sequen
es to the underlying bags.

Although they are not fun
tional, these relations are dire
ted by the data
ow.

That is why they are denoted by the arrows.

The formal spe
i�
ation S

DC

of the divide-and-
onquer algorithms will thus

look something like

spe
 Divide-and-Conquer[(S,<): Linear-Order℄

imports

bag(S),

ordered-seq(S)

sorts

I = bag(S),

O = oredered-seq(S)

operations

s:I->O,

d:I,I,I -> Bool,

:O,O,O -> Bool

axioms

d(x,y,z) => x = y + z,

(x,y,z) => |x| + |y| = |z|,

d(x,y,z) /\
(s(y),s(z),w) => s(x) = w

endspe

An abstra
t program P

DC

, partially implementing S

DC

an now be repre-

sented as the transition system

?>=<89:;
q

0

s(d

0

(i)):=o

ss?>=<89:;
q

i:=d

0

(i)

33

i:=d

1

(i)

++ ?>=<89:;
q

1

s(d

1

(i)):=o

kk

where d

0

(x) and d

1

(x) denote any bags satisfying d(x; d

0

(x); d

1

(x)). In a way,

the state q hides the implementation of d and
, whereas q

0

and q

1

hide the

implementation of the sorting of the parts.

The theorems of S

DC

are satis�ed at all states: they are the invariants of the

omputation. The transitions from state to state indu
e the interpretations of

the spe
i�
ation S

DC

in itself, mapping e.g. i 7! d

0

(i) in one
ase, or s(d

0

(i)) 7! o

in another. They all preserve the invariants, viz the theorems of S

DC

, of
ourse.

The satisfa
tion relation j=

DC

tells, moreover, for ea
h parti
ular state, whi
h

additional predi
ates, besides the theorems of S

DC

, have been made true by the

exe
uted
omputational steps, viz the substitutions in S

DC

.

The suitable re�nements of S

DC

yield the spe
i�
ations S

QS

of Qui
ksort

and S

MS

of Mergesort. As explained in [23, 24℄,

{ taking d(x; y; z) () x = y + z implies that
(x; y; z) must mean that z is

a merge of x and y | whi
h yields Mergesort, whereas

{ taking
(x; y; z) () x�y = z implies that d(x; y; z) must mean that y

and z are a partition of x, su
h that all elements of y are smaller than every

element of z | whi
h yields Qui
ksort.

Implementing S

QS

and S

MS

, one
an synthesize exe
utable programs P

QS

and

P

MS

. While the spe
i�
ations
ome with the interpretations S

DC

�! S

QS

and

S

DC

�! S

MS

, the programs
ome with the simulations P

QS

�! P

DC

and

P

MS

�! P

DC

, showing how the implementations hidden in P

DC

have been

realized.

All together, we now have three
ontra
ts, DC, QS andMS, with two adap-

tation morphisms between them.

�� ��
�� ��S

DC

||yy
yy

yy
yy

""EEEEEEEE

�� ��
�� ��S

QS

�� ��
�� ��S

MS

P

DC

P

QS

<<yyyyyyyy

P

MS

bbEEEEEEEE

This sorting module
an thus run in one of the two modes: Qui
ksort or Merge-

sort, and adapt, when needed, between one and the other. At ea
h point of

time, though, only one of them needs to be present, sin
e the other
an be au-

tomati
ally generated when needed. The module
an be set up to monitor its

performan
e, and re
on�gure when it falls below some treshold.

Suppose that the module is running as Qui
ksort, and the input data are

oming in almost sorted, whi
h brings it
lose to the worst-
ase behavior. The

adaptive interpreter aligns P

QS

and S

QS

, observes that 98% of the
omputation

time is spent on the divide routine d, and de
ides to simplify it. It generalizes

from S

QS

to S

DC

, and
hooses the simplest possible d, namely

d(x; y; z) () x = y + z

The theorem prover
an now derive that
must be merge, and thus automati
ally

re�nes S

DC

to S

MS

. Sin
e S

MS

ompletely determines the algorithm, the
ode

generator
an now synthesize P

MS

in a
hosen language. The adaptation path

was thus

P

QS

�! S

QS

�! S

DC

�! S

MS

�! P

MS

Of
ourse, in this simple
ase, the re
on�guration between the two modes

ould be a
hieved within a program, with a Qui
ksort and a Mergesort blo
k. One

ould build in a performan
e monitor into the program, maintain its statisti
s,

and then, depending on it, bran
h to one of the sorting blo
ks, more suitable for

the observed input distributions.

However, the real-life examples, that genuinely require self-adaptation [21℄,

often involve
hoi
e between modules too large to be loaded together. One
an,

furthermore, easily envisage situations when modules
ouldn't even be stored

together, either be
ause of their sizes, or be
ause of their large numbers. With

the advent of the agent te
hnologies, there are already situations when there are

in�nitely many logi
ally possible modes of operation, among whi
h one might

pro�tably
hoose on the
y. With the
urrent level of the program synthesis

te
hniques, of
ourse, this approa
h would be very hard to realize. Con
eptually,

however, it seems to be well within rea
h, and developing the te
hniques needed

for realizing it is a very attra
tive
hallenge.

2.3 Institutions, and satisfa
tion as payo�

The bipartite setting of spe
i�
ations
oupled with programs via a satisfa
tion

relation will probably not appear unfamiliar to the
ategori
ally minded mem-

bers of the software spe
i�
ation
ommunity. They will re
ognize the
ategory

C of
ontra
ts as
on
eptually related to institutions, although not in all details.

An institution is a very general model theoreti
 framework. introdu
ed by

Goguen and Burstall in [3℄, and pursued by many others in several di�erent

forms. Its main purpose was to �ll a
on
eptual gap in semanti
s of software.

While the formal methods of software engineering are in prin
iple based on

universal algebra and model theory, with spe
i�
ations stati
ally des
ribing some

omputational stru
tures, programs at large are dynami
 obje
ts, they
hange

state, and behave di�erently in di�erent states. And while the mathemati
al

theories
ompletely determine the
lasses of their stati
 models, as well as the

notion of homomorphism between them, the software spe
i�
ations do not pin

down the programs that realize them

2

. In model theory, the Tarskian satisfa
tion

relation j= is a �xed, primitive
on
ept; in theory of software spe
i�
ations, on

the other hand, there are many degrees of freedom in de
iding what does it

mean for a program to satisfy a spe
i�
ation, in parti
ular with respe
t to its

operational behaviour. It is then reasonable to display an abstra
t satisfa
tion

relation j= as a stru
tural part of an institution, that
an be varied together with

theories and models, while stipulating whi
h models satisfy whi
h theories.

3

2

Not in the sense that all programs implementing a spe
i�
ation
an be e�e
tively

derived from the spe
i�
ation, like all mathemati
al models of a theory, and indeed

the whole model
ategory, are e�e
tively determined by the theory.

3

Institutions thus bridge the gap between stati
 theories and dynami
 models by

allowing the abstra
t satisfa
tion relation to vary. Another way to bridge this gap

Following this
on
eptual lead, the satisfa
tion relation
an be generalized

from an ordinary relation, where q j= is evaluated as true or false, to an M -

valued relation, where q j=
an be any element of a distributive latti
e, or

a suitable
ategory, say M , measuring the degree to whi
h the
ondition is

satis�ed at the state q.

In standard game theoreti
 terms, the relation j= now be
omes the payo�

matrix, displaying the value of ea
h programmer's response to ea
h
lient's
all.

Indeed, if the formulas of S are understood as the set of moves (or strategies

4

)

available to the
lient, and the moves available to the programmer are identi�ed

with the states of P , then the satisfa
tion j= be
omes an P � S-matrix of the

elements of M , i.e. a map

j= : P � S �! M (2)

assigning the payo� to ea
h pair hq; i. It
an be understood, say, as displaying

programmer's gains for ea
h
ombination of the moves, and the game a
quires

the usual von Neumann-Morgenstern form, with the
lient trying to minimize

and the programmer to maximize this gain. The intuitive and logi
al meaning

of the pairs of arrows in opposite dire
tions, like in the adaptation morphisms,

has been analyzed in this
ontext in [6℄,
onne
ting games, linear logi
 and the

Chu
onstru
tion.

In any
ase, semanti
s of spe
i�
ation
arrying programs must draw ideas

and stru
tures from sour
es as varied as institutions and game theory, although

the goals and methods in ea
h
ase di�er essentially. On the level of abstra
t

ategories, both institutions and spe
i�
ation
arrying programs
an be analyzed

along the lines of the mentioned Chu
onstru
tion [2, 14, 19℄. The lax version

[13℄ is also interesting,
apturing the situation when adaptation may not just

preserve, but also improve the satisfa
tion relation between the program and

the spe
i�
ation. This
orresponds to relaxing in (1) the equivalen
e () to

the impli
ation (=. If j= and j=

0

are taken to be general M -valued relations, or

payo� matri
es, as in (2), a morphism f : hP; j=; Si �! hP

0

; j=; S

0

i improving

satisfa
tion will be a triple f = hf

P

; f

j=

; f

S

i,
onsisting of

{ a simulation P

f

P

 � P

0

,

{ an interpretation S

f

S

�! S

0

, and

{ for ea
h q

0

2 P

0

and 2 S an arrow

(f

P

(q

0

) j=)

f

j=

�! (q

0

j=

0

f

S

()) (3)

in M , with the suitable naturality
ondition.

is to introdu
e dynami
s into theories. This is one of the ideas behind Gurevi
h's

Abstra
t State Ma
hines (formerly known as evolving algebras) [4℄.

4

the distin
tion is of no
onsequen
e here

2.4 Towards fun
torial semanti
s of
ontra
ts

In order to express the above naturality
ondition, or work out a generi
 repre-

sentation of the
ategory C of
ontra
ts, one needs to present the spe
i�
ations,

and the programs in terms of their respe
tive
lassifying
ategories.

Given a spe
i�
ation S, say as a theory in a predi
ate logi
, the obje
ts of

the indu
ed
lassifying
ategory Swill be the well-formed formulas of S, modulo

the renaming of variables (�-
onversion). The arrows are the fun
tional relations

de�nable in S, modulo the provability. For instan
e, take formulas �(x) and �(y)

in S, as the representatives of obje
ts in S. By renaming, we
an a
hieve that

their arguments x and y are disjoint. An S-arrow from �(x) to �(y) will be a

predi
ate #(x;y), su
h that

#(x;y) ` �(x) ^ �(y)

�(x) ` 9y: #(x;y)

#(x;y

0

) ^ #(x;y

00

) ` y

0

= y

00

an be proved in S. The arrows of S thus
apture the theorems of S, whereas

the obje
ts
apture the language. More details
an be found in [17℄.

The point of presenting a theory S as a
ategory S is that the models of S
an

be obtained as the fun
tors S�! Set, preserving the logi
al stru
ture. This is

the essen
e of fun
torial semanti
s [7℄, and the foundation of
ategori
al model

theory [8, 9℄. The appli
ations to software engineering are dis
ussed in [17℄.

Related, more dire
t, but less uniform pro
edures allow deriving
ategories

from programs. They usually go under the name of operational semanti
s [18,

25℄, and
ome in too many varieties to justify going into any detail here.

Assuming that a spe
i�
ation S and a program P have been brought into a

ategori
al form, and presented as
lassifying
ategories S and P, the satisfa
tion

relation j=: S� P �! M will transpose to a stru
ture preserving fun
tor S�!

M

P

. When the
ategory M , measuring satisfa
tion, is taken to be the
ategory

Set of sets and fun
tions, j= will thus amount to a model of S in the universe

Set

P

of sets varying from state to state in P. A logi
ally in
lined reader may be

amused to spend a moment unfolding the de�nition of adaptation morphisms in

this model theoreti

ontext, and
on�n
ing herself that su
h morphisms indeed

preserve the given sense in whi
h a program satis�es spe
i�
ation, or improve it

along the suitable homomorphisms of models.

In any
ase, the naturality
ondition on the third
omponent of the adapta-

tion morphisms as de�ned the pre
eding se
tion
an now be expressed pre
isely,

on the diagram displaying the involved
omposite fun
tors.

P

0

� S

id�f

S //

f

P

�id

��

P

0

� S

0

j=

0

��

f

j=

%

P� S

j=

//
M

3 Adaptive interpreter as
oalgebra

While the des
ribed
ategory of
ontra
ts, implemented and supported by suit-

able tools, provides the stru
tural framework for software adaptation, it still does

not provide a spe
ial handle for automated, on-the-
y adaptation and re
on�gu-

ration. The dynami
s of self-adaptive software requires an additional dimension,

to be added to in the a
tual implementation of the spe
i�
ation
arrying mod-

ules. The main issue thus remains: how to implement an adaptive interpreter,

able to
ompute with self-adaptive, spe
i�
ation
arrying modules?

Given a
ontra
t hP; j=; Si, the adaptive interpreter should be able to:

{ evaluate P ,

{ test whether the results satisfy S,

{ adapt P , or assist program transformation P � P

0

,

{ support re�nement S �! S

0

.

In a standard setting, the denotation of a program P is a fun
tion p : A �!

B, where A and B are the types of the input and the output data, respe
tively.

An adapted program P

0

will yield a fun
tion p

0

: A �! B (where we are ignoring,

for simpli
ity, the fa
t that the data types A and B
an be re�ned). If adaptation

is viewed as a
omputational pro
ess, all the instan
es of an adapted fun
tion

that may arise
an be
aptured in the form

ep : � � A �! B

where � is the
arrier of adaptation, probably a monoid, or a partial order. The

stages of the adaptation �; �

0

: : : 2 �
an be asso
iated with the su

essive re�ne-

ments S; S

0

: : : of the spe
i�
ation of the adaptive program, and will be derived

from them by one of the model theoreti
 methods developed for this purpose

(i.e. as the \worlds", or the for
ing
onditions indu
ed by the re�nement).

5

5

The stages of adaptation should not be
onfused with the
omputational states,

through whi
h the exe
ution of a program leads. The exe
ution runs of a program

from state to state are, in a sense, orthogonal to its adaptation steps from stage to

stage.

All the instan
es p; p

0

: : : : A �! B of the adaptive fun
tion will now arise

by evaluating ep at the
orresponding stages �; �

0

: : : 2 �, viz

p(x) = ep(�; x)

p

0

(x) = ep(�

0

; x)

� � �

In this way, the pro
ess of adaptation is thus beginning to look like a rudimentary

dynami
 system. The pro
ess of self -adaptation will, of
ourse, be a system with

the feedba
k

bp : � �A �! B ��

omputing at ea
h stage � 2 �, and for ea
h input x 2 A not only the output

y = bp

0

(�; x) 2 B, but also the next stage �

0

= bp

1

(�; x) 2 �, with a better

adapted fun
tion p

0

(x) = bp(�

0

; x). Extended in this way along the
oordinate of

adaptation, the spe
i�
ation
arrying programs viewed as
ontra
ts
ome in the

form

b

j= : � � S� P �! M ��

The predi
table adaptation stages are stru
tured in � and
ontrolled by the

resumption
omponent of

b

j=. Alternatively, automated adaptation steps
an be

en
apsulated in spe
i�
ations and programs themselves, by individually extend-

ing the parti
ular fun
tions from stage to stage.

Independently on the level on whi
h it may be
aptured, the denotation of a

self-adaptive fun
tion will in any
ase be a transdu
er bp. Transposing it into a

oalgebra

bp : � �! (B ��)

A

brings with it the advantage that the behaviour preserving maps now arise auto-

mati
ally, as
oalgebra homomorphisms. (Instru
tive examples and explanations

of this phenomenon
an be found, e.g. in [20℄.) But even more importantly, it

allows a
onsiderably more realisti
 the pi
ture, sin
e it also allows introdu
ing

various
omputational monads T on the s
ene. A
oalgebra in the form

bp

T

: � �! (T (B ��))

A

aptures an adaptive family of
omputations involving any of the wide range of

features (nondeterminism, ex
eptions,
ontinuations. . .) expressible by monads

[10℄.

In any
ase,
ombining monads and
oalgebra will ensure a solid semanti
al

foundation not just for adaptive interpreters, but also for implementing the de-

sign environments for self-adaptive software. Explaining either of these theories

is far beyond our s
ope here, but monads seem to have been established as a

part of the standard toolkit of fun
tional programmers, and the material about

them abunds. Some
oalgebrai
 te
hniques for implementing pro
esses have been

presented in [5, 15, 16℄.

Referen
es

1. R.-J. Ba
k and J. Von Wright, The Re�nement Cal
ulus: A Systemati
 Introdu
-

tion. (Springer 1998)

2. M. Barr, �-Autonomous Categories. Le
ture Notes in Mathemati
s 752 (Springer,

1979)

3. J.A. Goguen and R.M. Burstall, Institutions: abstra
t model theory for spe
i�
a-

tions and programming. J. of the A.C.M. 39(1992) 95{146

4. Y. Gurevi
h, Evolving algebras 1993: Lipari guide. In: Spe
i�
ation and Validation

Methods, ed. E. B�orger, (Claredon Press 1995) 9{37

5. B. Ja
obs, Coalgebrai
 spe
i�
ations and models of deterministi
 hybrid systems.

In: Pro
. AMAST, ed. M. Nivat, Springer Le
t. Notes in Comp. S
i. 1101(1996)

520{535

6. Y. Lafont and T. Strei
her, Games semanti
s for linear logi
. Pro
 6

th

LICS Conf.

(IEEE 1991) 43{49

7. F.W. Lawvere, Fun
torial Semanti
s of Algebrai
 Theories. Thesis (Columbia Uni-

versity, 1963)

8. M. Makkai and R. Par�e, A

essible Categories: The Foundations of Categori
al

Model Theory. Contemporary Mathemati
s 104 (AMS 1989)

9. M. Makkai and G. Reyes, First Order Categori
al Logi
. Le
ture Notes in Mathe-

mati
s 611 (Springer 1977)

10. E. Moggi, Notions of
omputation and monads. Information and Computation 1993

11. C. Morgan, Programming from Spe
i�
ations. (Prenti
e-Hall 1990)

12. G.C. Ne
ula, Compiling with Proofs. Thesis (CMU 1998)

13. V.C.V. de Paiva, The Diale
ti
a
ategories. In: Categories in Computer S
ien
e

and Logi
, J. Gray and A. S
edrov, eds., Contemp. Math. 92 (Amer. Math. So
.,

1989) 47{62

14. D. Pavlovi
, Chu I:
ofree equivalen
es, dualities and �-autonomous
ategories.

Math. Stru
tures in Comp. S
i. 7(1997) 49{73

15. D. Pavlovi
, Guarded indu
tion on �nal
oalgebras. E. Notes in Theor. Comp. S
i.

11(1998) 143{160

16. D. Pavlovi
 and M. Es
ardo, Calulus in
oindu
tive form. Pro
 13

th

LICS Conf.

(IEEE 1998) 408{417

17. D. Pavlovi
, Semanti
s of �rst order parametri
 spe
i�
ations. in: Formal Methods

'99, J. Wood
o
k and J. Wing, eds., Springer Le
t. Notes in Comp. S
i. 1708(1999)

155{172

18. G. Plotkin, Stru
tural Operational Semanti
s. Le
ture Notes DAIMI-FN 19(1981)

19. V. Pratt, Chu spa
es and their interpretation as
on
urrent obje
ts. In: Computer

S
ien
e Today: Re
ent Trends and Developments, ed. J. van Leeuwen, Springer

Le
t. Notes in Comp. S
i. 1000(1995)

20. J.J.M.M. Rutten, Universal
oalgebra: a theory of systems. To appear in Theoret.

Comput. S
i.

21. J. Sztipanivits, G. Karsai and T. Bapty, Self-adaptive software for signal pro
ess-

ing. Comm. of the ACM 41/5(1998) 66{73

22. D. Turi and G.D. Plotkin, Towards a mathemati
al operational semanti
s. In: Pro
.

12

th

LICS Conf. (IEEE 1997) 280{291

23. D.R. Smith, Derivation of parallel sorting algorithms. In: Parallel Algorithm

Derivation and Program Transformation, eds. R. Paige et al. (Kluwer 1993) 55{69

24. D.R. Smith, Towards a
lassi�
ation approa
h to design. In: Pro
. 5

th

AMAST,

Springer Le
t. Notes in Comp. S
i. 1101(1996) 62{84

25. G. Winskel and M. Nielsen, Presheaves as transition systems. In: Pro
. of POMIV

96, DIMACS Series in Dis
rete Mathemati
s and Theoreti
al Computer S
ien
e

(AMS 1997) 129{140

