Deriving Secure Network Protocols for Enterprise
Services Architectures

Matthias Anlauff*, Dusko Pavlovic*, and Asuman Suenbuel?

*Kestrel Institute
3260 Hillview Avenue
Palo Alto, CA 94304

Abstract— Enterprise Service Architectures are emerging as
a promising way to compose Web-Services as defined by the
W3C consortium, to form complex, enterprise level services.
However, due to the fact that each Web-Service composition is
also a protocol composition, this composition gets problematic,
if security protocol mechanisms are used for the individual
Web-Services, because security properties are not preserved
under composition. This paper outlines the approach of protocol
derivations that on the one hand mimics the general engineering
practice when combining security features, but on the other hand
avoids the problems that can arise during the composition of
Web-Services by using well-founded mathematical concepts. The
Protocol Derivation Assistant, a tool that supports this approach,
is also introduced in this paper.

I. INTRODUCTION

Today’s challenges in providing web-based services have
manifested itself in the definition of enterprise level frame-
works for the efficient and controlled composition of Web-
Services, a W3C initiative to provide a standard means of
interoperating between different software applications, run-
ning on a variety of platforms and/or frameworks, see [2].
Enterprises have discovered the potential behind the concepts
of Web-Services and have started to provide frameworks that
make use of this approach. SAP Netweaver is a prominent
example of such a framework with its Enterprise Service
Architecture component ([13]). Other companies, especially
those providing integration solutions for business customers,
are starting to also develop similar framework based on
the Web-Services architecture. An atomic Web-Services-based
exchange is sketched in Figure 1.

It shows the roles and different phases of a service request
and execution. The enterprises use the Web-Services to au-
tomate tool connections that often are made by hand, for
example, by a human manually typing information that one
tool has produced as output into the input forms of one or
more other tools that further process the data. The existence
of a standard like Web-Services nourishes the hope that these
interface help automating these processes. Figures 2 and 3
show an example of the approach taken by the integration
frameworks on top of Web-Services: migrating from hard-
wired, often manual-input based connections between the
different tasks, the Web-Services can be used to automate this
process.

This paper focuses on a very important aspect of Enterprise
Service Architectures based on Web-Services: network secu-

TSAP Research Labs
3175 Deer Creek Road
Palo Alto, CA 94304

1. Farties "become known" io each other

-

_____ Requester Enfify A Provider Entity
! Requester ., - - i
\ Hurman - ’i 2. Agree on semantics & W?S’ﬁ‘: -~ ~ IPiIrowder !
1 & i i - umat !
' L Sem H
V3 Dput : .: 3. Iput
| Semantics i r Semantics
L& WD : . £ & WS
' : \4

i . Inigract | gp

i P Agent

Fig. 1. The General Process of Engaging a Web Service (source: [2])

rity. In the following section, we will explain the parallels be-
tween Enterprise Service Architecture and protocol derivation,
and explain the implications of this, namely the problem of
non-compositionality of security concepts. After that, we will
introduce the concepts of the approach of protocol derivations,
and try to explain how this can be used in the context of
Enterprise Services.

II. (SECURE) ENTERPRISE SERVICE COMPOSITION =
(SECURITY) PROTOCOL DESIGN

The Enterprise Service Architecture frameworks are based
on the idea of composing Web-Services so that new services
emerge from that process. Those can in turn become part
in the definition of even more complex processes. If we
look at this from a communications point of view, we notice
that each web-service establishes a data exchange between
the integration framework server and the web-service client
providing the service. The composition of Web-Services, as
promoted by the Enterprise Service Architectures, is therefore
also a composition of message exchanges, which is in gen-
eral referred to as protocols. In other words, by composing
Web-Services from different servers, one is establishing a
communication protocol between the participating agents. In
many cases, the individual Web-Service invocations make
use of standard encryption mechanisms in order to protect
sensitive business data from being compromised. Thus, the

SITUATION TODAY
Extended Order-to-Cash Process

People as "Human Integrators”

Prod

Purchaser Planner

“Hardwired" Enterprise Systems

Fig. 2. Service connections without Web-Services-based techniques (source:

(13D

ENTERPRISE SERVICES ARCHITECTURE
Extended Order-to-Cash Process

Internal and External Users

Prod.
Planner

Purchaser Accountant

I Composite Applications

()
SAP NetWeaver”

ERP
(Supplier)

CRM
(Supplier)

SRAM
(Internal)

ERP
(Internal)

CRM
(Internal)

SRM
(Buyer)

Enterprise Systems

Fig. 3. Using Web-Services-based techniques to automate business processes
involving components from different providers (source: [13])

composition of Web-Services involves the composition of
security mechanisms in the hope that the security features of
one individual Web-Services protocol survive the composition
with others. But this is exactly the error, many developers
of systems involving security protocol composition make: the
composition of two or more secure (sub-)protocols can lead
to insecure protocols. In other words, security properties of
protocols are not compositional. A simple example would the
composition of a protocol establishing a secret key between
client and server with a protocol sending this key in the clear
as part of a message exchanged between the client and the
server. Although this fact is known and has been published

by researchers, the common practice of protocol development
composes security protocols and tries to minimize the possible
security holes by extensive testing.

The basis of the work we are presenting in this paper is
a framework for deriving security protocols based on mathe-
matically well-founded concepts, as outlined in [4], [6], [11].
The general idea of this approach is it to capture the common
practice of security protocol engineering and put it onto a
solid foundation. The mentioned approach has been used for
detecting a security hole in the GDOI protocol, a internet draft
for group communication applications (e.g. pay-per-view). The
mentioned approach helped uncovering a security flaw that
otherwise remained undetected by an expert group over several
years and through half a dozen internet drafts; see [11]. With
Enterprise Service Architectures and with it the composition of
Web-Services becoming more and more popular, this scenario
is very likely being repeated, if the services are composed
without having this problem concerning the security features
in mind.

In the following, we will give a brief overview of our
the basics of our protocol composition approach; after that,
we will outline the functionality of the Protocol Derivation
Assistant, a tool supporting this approach.

III. BRIEF OVERVIEW OF CHALLENGE RESPONSE LOGIC

The logic we use is built out of simple axioms describing the
conclusions that a principal can draw from her observations
of protocol actions, using the known axioms. These axioms
are usually of the form: “If A performs certain sequence of
actions, then A can conclude that some other sequence of
actions by other parties, also occurred”. For instance, if A
receives a message, then she can conclude that someone must
have sent that message; if that message contains a term only
B can form, then she knows that B must have been on the
path of the message.

The notation will be used as follows. A language of terms
t, sent in messages, is assumed. It includes variables for
unknown terms or agents, and sufficient typing. The expression
(vm) describes the generation of a fresh nonce m. The
expression ((t)) a4 describes the action of the agent A sending
a message containing a term ¢, while (¢) 4 denotes A sending
just ¢t. The expression ((t)) 4 describes A’s receiving a message
containing a term ¢, while (¢) 4 denotes A’s receiving just ¢.
When the source and the destination of a sent or received
message are relevant, then these actions can be extended to
((t: A— B))e and ((t : A — B))c, where A and B
are respectively the purported source and destination fields,
whereas C' is the principal who actually performs the action.
On the other hand, the subscript "C' <” (e.g. as in ({(t))c<
etc.) means that C' is the originator of the relevant message.'

Atomic statements are generated over actions in one of the
following forms:

e a < b — "the action a has occurred before b”,
e a=0b— "the actions a and b are identical”, and

c,

"Formally, ((t))c< abbreviates Je.c = {({t))c AVb.b = ((t))p = b
t). The

and ((t)) g itself abbreviates (U (t)) g, for some transparent term U (
details are in [12].

2
Tl

e a — ’the action a has occurred”.

The equality of actions identifies the expressions describing
them. The composite statements are now generated by the
usual connectives and the first order quantifiers.

Each statement is annotated by a prefix “A :”, denoting the
view or knowledge of agent A.

There are two basic axioms that describe the semantics of
the actions of sending and receiving messages.

(t) = Fa. a= ({t) Aa < (t)
(vm)y = Vaa. (m € FV(a) = a > (vm)) A
A#£M = (vm)y < {((m)ar <
(m))a <aa

The (rcv) axiom says that if a message is received, it must
have been sent. The (new) axiom says that, if a fresh value
is generated, then any action involving that fresh value must
occur after its generation; moreover, if some principal other
than the originator receives a message containing the fresh
value, then the originator of the value must have sent a
message containing it. All principals are assumed to know
these axioms?.

Axiom (cr) supports the reasoning of the initiator of a
challenge-response protocol. It is formalized as follows:

A (om)a(((APm))a < ((4Pm)a

(rev)

(new)

(cr)

The expression ¢*Zm denotes a challenge function applied to
m, while the expression 748m denotes a response function
applied to m. The axiom can be viewed as a specification of
the requirement defining these two functions. It tells that A
can be sure that if she issues a message containing a challenge
cABm, and receives response containing rA8m, then B must
be the originator of that response. In other words, B is the only
agent who could have transformed ¢AZm to 748m, given the
A’s own observed actions.

In the various instances of axiom (cr), functions ¢ and
r satisfying the above specification, can be implemented in
various ways, e.g. taking B’s signature as the response, or B’s
public key encryption as the challenge. In each case, it will
need to be proved that the particular implementation, satisfies
the specified requirement.

The logic also contains axioms for composing, refining
and transforming protocols. A transformation or refinement
usually adds a new property or functionality to the protocol,
in which case it comes annotated with an axiom, leading
to new conclusions. In authentication protocols, such axioms
may expand principal’s knowledge about the events in the
run of the protocol that he is participating. For example,
in the basic challenge-response axiom there is no indication
that B intended its message as a response to A’s particular
challenge. This would need to be supplied by some refinement

2FV (a) stands for the set of free variables in a

introducing a specific integrity token, such as computing a
MAC.

Below, we describe a derivation of a simple challenge and
response protocol. As usually, messages are represented by
horizontal arrows from one principal to another. A vertical
line corresponds to principal’s internal change of state. If the
principal creates a new value m, this is represented by putting
vm next to the appropriate vertical line.

There are several properties of protocols that will be of
interest here. One, known as matching protocol runs, due
to Diffie, van Oorschot, and Wiener [5], says that after two
principals complete a protocol successfully, then they both
should have the same history of messages sent. Another, due
to Lowe [10], known as agreement, says that the principals
should not only agree on the message history, but who the
participants were in the protocol, and which roles each played.

a) Assumptions.: A principal can be honest, and follow
the protocol, or dishonest, and perform arbitrary actions.
However, it is assumed that neither an honest nor a dishonest
principal can compromise the private data used to authenticate
him. This means that a response function in a challenge re-
sponse protocol cannot be delegated. One way to interpret this
is that the identity is reduced to possession of authenticating
data: whoever has the data, is recognized as a legitimate carrier
of the identity.> More innocently, the same assumption can
be construed as a simplifying convention, introduced to avoid
carrying explicit conditions in proofs; but they can be added
when needed.

We also tacitly assume strong typing. If a principal, for
example, attempts to use data of one type in place of data
of another type (e.g. a key in the place of a nonce), this will
be detected and the message will be rejected. This again is a
relatively strong assumption, but has been shown to lead to
no essential loss of analytical power, under certain reasonable
provisos [9]).

These assumptions are a matter of convenience, which will
undoubtedly be modified in future work. For example, one of
the properties of interest for GDOI and many other protocols
is perfect forward secrecy, which describes the behavior of the
protocol after a master key is compromised.

IV. THE PROTOCOL DERIVATION ASSISTANT

The Protocol Derivation Assistant (PDA) [1] is to support
incremental derivations of practical security protocols, together
with proofs of their security properties. The protocol deriva-
tions start from basic protocol components, and use generic
refinements and transformations, just like proof derivations
start from axioms, and use generic proof rules and proof
transformations. But the guiding idea of PDA is capture
incremental methods of protocol design arising in practice, and
support them in a framework open for evolution rather than
to attempt to reduce security to a predetermined set of formal

3For instance, no principal can pass his fingerprints or handwriting to others.
In cryptographic authentication, this means that no agent can disclose the
master keys, used to authenticate him: they are strictly bound to his identity.
Finally, there are protocols for which such assumptions do not lead to any
loss of the ability to reason about security (the “Machiavellian™ protocols of
Cervesato et al., [3]), but we do not necessarily limit ourselves to these.

rules. The envisioned results should enable assured protocol
derivations, running in parallel with proofs of the desired
security properties. Such parallel derivations would be realized
using a library of protocol components, generic refinements
and transformations, carrying proofs of the relevant security
and preservation properties. Alternatively, the same system
could cater for attack derivations, running in parallel with the
proofs of vulnerabilities.

PDA’s user interface consists of a graphical editor; protocols
are represented in a similar two-dimensional style as they
can be found in text-books and papers. This representation
resembles the “desired run” of the protocol, i.e. the flow
of information that a protocol designer has in mind when
designing a certain protocol. In the following, we will show
some basic concepts of the tool and provide screen dumps to
show the look-and-feel. PDA is implemented as an Eclipse [7]
plugin using the GEF [8] framework.

The basic entity of a protocol derivation using PDA is a
protocol. A protocol is a distributed program. To specify a
protocol, we must specify a sequence of actions to be executed
by every participant in the protocol. Actions divide into two
groups: external actions i.e. sending and receiving a message
and internal actions i.e. generating nonces, keys, decryption
and other local computation. Protocols are entered into Pda via
a straightforward interface. Program of every agent is a linear
sequence of state descriptions (Stads), with transitions being
either send, receive, or agent step (internal computation). For
example, two-party protocol CR[I,R](c,r) is shown in Figure
4.

CR[I,R](c,r)

new m

c(l,R,m)

=
=

r(l,R,m)

Fig. 4. The basic Challenge-Response protocol as entered into the PDA

Agent I (initiator) has the following sequence of actions:
generate a new nonce m, send the message ¢(I, R,m) to R,
receive a message (I, R,m) from R. Agent R (responder)
receives a message c¢(I, R,m) from I and sends a message
r(I,R,m) to I. Messages exchanged in the protocol contain
concrete cryptographic primitives such as encryption, signature
and hash, and function variables such as ¢ and r in this
example. When a protocol contains function variables, we say
that it is a protocol template. Protocol header CR[I, R|(c, r)
should be read: C'R is a two party protocol (agents are named
I and R), using abstract function variables ¢ and r.

A. Protocol Derivation (1): Instantiation

Simplest derivation step is protocol instantiation. Using the
”Create New Instance” command, some (or all) of the function
variables can be refined to concrete primitives or other function
variables. For example, we can get a one-way challenge-
response protocol using nonces and signature as an instance
of CR[I, R](c,r) with the following instantiation:

SCR[I, R] = CR[I, Rl(c(z,y,2) = z,7(z,y, 2) = Sig(y, z,))
In the resulting protocol SCR[I,R], agent I sends a fresh nonce

to R who replies with his signature over the nonce and I's
identity, as shown in Figure 5.

SCRILR] = CRI1LRIC(X,Y,2)=Z,1(%,y,2)=Sigly,2,X))

I R

new m

=
=

Sig(R,m,l)

Fig. 5. The instantiated CR protocol

B. Protocol Derivation (2): Composition

As mentioned earlier, protocols can be combined using
composition; we will outline this concept using a simple se-
quential composition operator. In a resulting protocol, program
of each agent is a concatenation of their programs from the two
protocols. For example, protocol Two_-CR[I, R|(c, r,c0,70)
is obtained by sequentially composing C'R[I, R|(c,r) with
it’s reverse copy Reverse_C'R[I, R](c0,70) (which is in turn
obtained by simple instantiation Reverse_CR[I, R](c0,7r0) =
CRI[R, I](c0,70)).

Protocols can be composed using a concept that is called
Rules in PDA. Rules can be regarded as graphical macros that
allow for the definition of customized composition operators.

C. Proofs

Alongside the development of the protocols, the proof
obligations that are affiliated with each of them are recorded
and given to an automatic theorem prover. Using the basic
challenge-response logic as basis, PDA provides not only a
graphical tool for designing and deriving protocols, but also
the ability to prove whether certain security properties survived
the composition with another (sub-)protocol.

CR[I,Rl(c,n Reverse_CR[I,R](c.r) = CR[R,l](c.n
I R R
B B
new m new m
—

B B B i
<(l,R,m) c(R,I,m)

] L]] L]
r(LR,m) f(R,1,m)

\ /

Two_CRII,RI(c,r,c0,r0) = { CRILRI(c,r); Reverse_CRII,R](c0,r0) |
1 R
]|
ew ml

] L]
c(l,R,m1}

] L]
r(l,R,m1)

new mo

] L]
cO(R,1,m0)

] L]
rO(R,I,m0)

Fig. 6. Sequential composition of Protocols

V. SUMMARY

In this paper, we have outlined the problems of Enterprise
Service Architectures with respect to network security caused
by the general lack of composability of message exchanges
as an result of composing Web-Services. We have outlined
and briefly explained our derivational approach to protocol
development as well as the Protocol Derivation Assistant, a
software system that supports the derivational design approach
of the underlying protocol logic. In the near future, we will
expand our research work in this area and we are planning to
conduct more experiments, especially in the area of business
applications.

REFERENCES

[11 Matthias Anlauff and Dusko Pavlovic. The protocol derivation assistant,
2005. URL http://www.kestrel.edu/software/pda.

[2] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris,
and D. Orchard (eds.). Web services architecture. W3C Working Group
Note, 2004. URL http://www.w3c.org/TR/ws—arch.

[3] I Cervesato, S. Meadows, and P. Syverson. Dolev-Yao is no better than
Machiavelli. In First Workshop on Issues in the Theory of Security:
WITS’00, July 8-9 2000.

[4] A. Datta, A. Derek, J.C. Mitchell, and D. Pavlovic. Secure protocol
composition. In Proceedings of ACM Workshop on Formal Methods
in Computer Security 2003, pages 109-125, Washington, DC, October
2003. ACM.

[5]1 W. Diffie, P. C. van Oorschot, and M.l J. Wiener. Authentication and
Authenticated Key Exchanges. Designs, Codes, and Cryptography,
2:107-125, 1992.

[6] N.A. Durgin, J.C. Mitchell, and D. Pavlovic. A compositional logic for
proving security properties of protocols. Journal of Computer Security,
11(4):667-721, 2003.

[7] Eclipse-Team. Eclipse, 2005. URL http://www.eclipse.org.

[8]
[9]

[10]

(11]

[12]

[13]

GEF-Team. The Graphical Editing Framework (GEF), 2005. URL
http://www.eclipse.org/projects/gef.

J. Heather, S. Schneider, and G. Lowe. How to prevent type flaw attacks
on security protocols. In Proceedings of the 13th IEEE Computer
Security Foundations Workshop. IEEE Computer Society Press, June
2000.

G. Lowe. A hierarchy of authentication specifications. In Proceedings of
the 10th IEEE Computer Security Foundations Workshop, pages 31-43.
IEEE Computer Society Press, 1997.

Catherine Meadows and Dusko Pavlovic. Deriving, attacking and
defending the gdoi protocol. In Peter Ryan, Pierangela Samarati, Dieter
Gollmann, and Refik Molva, editors, Proceedings of ESORICS 2004,
volume 3193, pages 53-72. Springer Verlag, 2004.

D. Pavlovic and C. Meadows. Deriving authenticity and integrity as
order of actions. Technical report, Kestrel Institute technical report,
January 2004.

SAP. Enterprise services architecture an in-
troduction. SAP White Papers, 2005. URL
http://www.sap.com/solutions/netweaver/pdf/—
WP_Enterprise_Services_Architecture_Intro.pdf.

