
Colimits for Concurrent Collectors

Dusko Pavlovic1, Peter Pepper2, and Doug Smith1

1 Kestrel Institute ({dusko,smith}@kestrel.edu)
2 Technische Universität Berlin (pepper@cs.tu-berlin.de)

Abstract. This case study applies techniques of formal program de-
velopment by specification refinement and composition to the problem
of concurrent garbage collection. The specification formalism is mainly
based on declarative programming paradigms, the imperative aspect is
dealt with by using monads. We also sketch the use of temporal logic in
connection with monadic specifications.

1 Introduction

The study of algebraic specification techniques has led to deep insights into
this specification paradigm and to very elaborate methods and systems such as
the Specware environment at Kestrel Institute [16, 15]. In this approach one
can derive complex algorithms by elaborate combinations of specifications. The
underlying principles are taken from category theory, in particular morphisms,
pushouts, and colimits.

However, these concepts were mostly targeted to purely functional computa-
tions. The inclusion of imperative programming started only recently. The even
more challenging task of addressing parallel problems in this setting has – to our
knowledge – not been seriously undertaken so far.

Today the study of the integration of algebraic/functional and imperative
features concentrates mainly on two approaches: abstract state machines and
monads. The specification language Specware contains the former concept in
the form of evolving specifications [12], whereas functional programming lan-
guages such as Opal or Haskell usually prefer monads. We choose here the
monad-style formalism, since we want to assess its usefulness in the context of
specifications.

It is generally agreed that the task of parallel garbage collection provides
a sufficiently challenging problem for the evaluation of programming concepts.
Therefore we choose this task for our case study. Since there is ample literature
on the issue of garbage collection, we refer only to the book [3] and the article
[18] for background information.

In the greater part of the paper we work out the example of concurrent
garbage collection (Sections 2-5). The assessment of the conceptual principles
that are applied during the development is sketched in Section 6. We base our
programs on the concept of monads.

System

Mutator Collector

Mut-Spec(M-Env) Coll-Spec(C-Env)

M-Env C-Env

Mutator-View Collector-View

Monad(Heap)

Monad(State) Heap

State Graph

Fig. 1. Sketch of the specification structure

Program 1.1 Outline of the system
spec System =

import Mutator, Collector
fun run : M[Void] = (mutate ‖ collect)

spec Mutator = Mutator-Spec(Collector)
spec Collector = Collector-Spec(Mutator)

spec Mutator-Spec(Mutator-Environment) = . . .
spec Collector-Spec(Collector-Environment) = . . .

1

2

3

4

5

6

7

The overall structure of our derivation is sketched in Figure 1 and its textual
representation in Program 1.1. It consists of three major parts: the base speci-
fications, the mutator, and the collector. The basis of the whole program is the
specification Heap, an extension of Graph, which contains all relevant aspects and
operations. Together with the parameterized specification Monad this yields the
central structure Monad(Heap) of monadic heaps. The upper half of the diagram
shows that the overall System is composed of a Mutator and a Collector. The
Mutator is an instance of the parameterized specification Mutator-Spec, where
the Collector plays the role of the argument. (This is shown as the dashed sub-
diagram.) And for the Collector the situation is analogous, now with Mutator
as the argument. (This is shown as the dotted subdiagram.) This mutual recur-
sion is an instance of Lamport’s principle of rely/guarantee conditions [5].

The paradigm of program development will turn out to be particularly ben-
eficial. For it will be seen that our initial derivation produces a correct solution,
albeit based on a non-executable operation (Section 4). Therefore we have to add
further complications to both the collector and the mutator. But these additions
can be done by replaying the original derivation (Section 5).

Notation. The notation is a mixture between Specware [10, 16], Opal [13]
and Haskell [2], extended by some convenient syntactic sugar. For example,
we mimic an object-oriented notation by using the infix function

fun . : α× (α→ β)→ β
def x.f = f(x)
Functions characterized by the keyword fun must be implemented, whereas

functions characterized by aux only serve specification purposes and therefore
need not be implemented. (To ease reading we write these auxiliary operations
in italic.)

The use of a pre-/postcondition style is only syntactic sugar for certain kinds
of implicational algebraic equations. For example, the specification of connect
in Program 2.1 below is equivalent to the axioms

axm G.connect(x, y) needs x ∈ G.nodes∧ y ∈ G.nodes
axm G.connect(x, y).sucs(x) = G.sucs(x)⊕ y
axm G.connect(x, y).sucs(z) = G.sucs(z) if x �= z
axm G.connect(x, y).nodes = G.nodes

-- precondition
-- essential
-- may be omitted
-- may be omitted

In postconditions we often name the arguments and results of functions in a
form like G and G′, respectively. This way we can mimic the specification style
of the language z.

We choose a coalgebraically oriented specification style, where types are char-
acterized by their “observations”, that is, by their selectors. This will fit more
nicely into our later considerations. However, there is currently no generally
agreed syntax for coalgebraic descriptions; therefore we use an ad-hoc notation.

The coalgebraic style requires that we specify operations coinductively. That
is, we must specify the effects of the operation for all selectors (“observers”) of
the type. In doing so, we frequently encounter a phenomenon that can be seen in
the last two of the above axioms. This becomes even more evident if we rewrite
them in a higher-order style:

axm sucs(z) ◦ connect(x, y) = sucs(z) if x �= z
axm nodes ◦ connect(x, y) = nodes

These two axioms simply state that the operation connect has no effects on
the two observers sucs(z) and nodes. To shorten the presentations we there-
fore introduce the convention that equations for unaffected selectors may be
omitted.

A problem with parameterized specifications. As could already be seen
in Fig. 1, a great part of our design is based on parameterized specifications.
Here we encounter a subtle difficulty, which we bypass by a small notational
convention. In a specification like (see Program 5.5 later on)

spec Scavenger (Scavenger-Environment) =
. . .

thm∗invariant black

thm invariant (marked ⊆ white)
-- only for body
-- also for parameter

we need to distinguish two kinds of theorems. One kind – in this example
invariant black – is valid “locally”, that is, for the specification Scavenger

Program 2.1 Basic specification of graphs
spec Graph =
sort Node

-- the (coalgebraic) type for graphs
sort Graph selectors nodes, sucs
fun nodes : Graph→ Set Node

fun sucs : (n : Node)→ (G : Graph)→ Set Node

pre n ∈ G.nodes
-- add /delete arc
fun connect : (x : Node, y : Node)→ (G : Graph)→ (G′ : Graph)

pre x ∈ G.nodes ∧ y ∈ G.nodes
post G′.sucs(x) = G.sucs(x)⊕ y

fun detach : (x : Node, y : Node)→ (G : Graph)→ (G′ : Graph)
pre x ∈ G.nodes ∧ y ∈ G.nodes
post G′.sucs(x) = G.sucs(x)� y

-- reachability
aux reachable : (R : Set Node)→ (G : Graph)→ (S′ : Set Node)

pre R ⊆ G.nodes
post S′ = least S. (R ⊆ S) ∧ (∪/(G.sucs) ∗ S ⊆ S)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

proper. We characterize these properties by writing thm∗. The other kind – in
this example invariant (marked ⊆ white) has to hold both for the specification
Scavenger proper and for its parameter specification Scavenger-Environment.
We write these with the usual keyword thm. In Section 6 we will indicate how
this notational shorthand is translated into a “clean” algebraic framework.

2 Specification of Graphs and Heaps

We model the garbage collection problem by special graphs.

2.1 Graphs

The basic graphs are specified in Program 2.1.
Explanation of Program 2.1:
2 The type for the nodes is unconstrained.
3-7 Graphs are defined coalgebraically by two selector functions (observers):

nodes gives the set of nodes of the graph; sucs yields for each node in
the graph the set of its successors (and thus implicitly the set of arcs).

8-14 We can add and delete arcs from a graph. Since the type Graph is specified
coalgebraically, the definitions of connect and detach – which yield a new
graph – have to be given coinductively. That is, we have to specify the
effects of connect and detach on the two selector functions. (Note that
– according to our conventions – the unaffected selector nodes and the
unchanged part of sucs need not be specified here.)

Program 2.2 Specification of heaps
spec Heap = extend Graph by
-- the (coalgebraic) type for heap
sort Heap = extend Graph by selectors roots, free
fun roots : Heap→ Set Node

fun free : Heap→ Node

-- allocate a node from the gray free list
fun new : (H : Heap)→ (H′ : Heap, n′ : Node)

pre H.gray
= ∅
post n′ ∈ H.gray

H′.gray = H.gray � n′

H′.sucs(n′) = ∅
-- recycling a white garbage node
fun recycle : (H : Heap)→ (H′ : Heap)

pre H.white
= ∅
post H′.gray = H.gray ⊕ n where n ∈ H.white

-- reachable from the roots
aux black : (H : Heap)→ (B : Graph)

post B.nodes = H.reachable(H.roots)
n ∈ B.nodes⇒ B.sucs(n) = H.sucs(n)

-- alternative name for freelist
aux gray : (H : Heap)→ Set Node = H.reachable({H.free})
-- all accessible nodes (black or gray)
aux dark : (H : Heap)→ Set Node = H.black ∪ H.gray
-- totally unreachable nodes (garbage)
aux white : (H : Heap)→ Set Node = H.nodes \ H.dark

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

15-18 The set of nodes reachable from a given set R of nodes is the smallest set
that contains R and is closed under the successor operation.
This operation is only used for specification purposes and therefore need
not be implemented. This is expressed by using the keyword aux instead
of fun.

2.2 Heaps

Garbage collection operates on the so-called heap area of the computer memory.
These heaps are modelled here as special graphs. For the specification we use a
coloring metaphor by speaking of black, gray and white nodes.
Explanation of Program 2.2:
1 Heap is a specialization of Graph.
2-5 Heaps are defined coalgebraically as subtypes of graphs by adding two

further selection functions (observers): roots gives the set of entry nodes
(from the program) into the heap; free is the root of the freelist.

6-11 We can allocate a node from the (gray) freelist. This means that we pick
a free node n′ and return this node and the (graph with the) remaining
freelist. The allocated node has no successors.

Program 2.3 Useful properties of the heap operations
spec Heap = extend Graph by
. . .
-- monotonicity of white
thm monotone(white)(connect(x, y)) if y
∈ white

thm monotone(white)(detach)
thm monotone(white)(new.π1)
-- invariance of black
thm invariant(black)(recycle)

aux invariant : (f : Heap→ α)→ (ev : Heap→ Heap)→ Bool =
∀H : Heap. f(H) = f(ev(H))

aux monotone : (f : Heap→ Set Node)→ (ev : Heap→ Heap)→ Bool =
∀H : Heap. f(H) ⊆ f(ev(H))

1

2

3

4

5

6

7

8

9

10

11

12

12-15 Recycling simply picks a (white) garbage node and adds it to the freelist.
(We can leave the detailed organization of the freelist open.)

16-25 Following a tradition in the literature we introduce a color metaphor
to express the partitioning of the graph into reachable nodes (black),
the freelist nodes (gray) and the garbage nodes (white). Since we often
address both black and gray nodes, we introduce the name “dark” for
them. Again, these operations are only used for specification purposes
and need not be implemented.
Note that the operation black does not only designate the reachable
nodes, but the whole reachable subgraph. (The reason is that we will have
to guarantee later on the invariance of both the black nodes and arcs.)

2.3 Properties of Heaps

During our derivation we will need a number of properties of the operations of
Heap. Their motivation will only be seen at the points of their applications. More-
over, they are mostly evident. Therefore we only list a representative selection
here (see Program 2.3).
Explanation of Program 2.3:

1-2 The specification Heap entails a number of properties, which are added
here.

3-6 The operations connect, detach and new may at most increase the set
of white nodes but never decrease it. This is expressed using an auxiliary
function monotone (see below). Note that for connect this is only true,
when the second node y is not white.

7-8 The operation recycle leaves the set of black nodes invariant. This is
expressed using an auxiliary function invariant (see below).

9-10 The invariance of an observer function f under an evolution ev simply is
f = f ◦ ev.

11-12 The monotonicity of an observer function f under an evolution ev simply
is f ⊆ f ◦ ev.

Later on we will take the liberty of writing e.g. invariant(black)(nodes). In
these cases, where the second function does not yield a new heap, the invariance
and monotonicity are automatically true. (This extension of the two concepts
will save some case distinctions later on.)

3 A Monad For Heaps

Our ultimate goal is to design two parallel processes that operate on a com-
mon heap. This leads into the realm of state-oriented programming. As already
mentioned in the introduction, we choose monads here to cope with impera-
tive concepts in the context of functional specifications. Their suitability for this
purpose will be assessed in Section 6.

3.1 What are Monads?

Following Leibnitz, monads are to philosophy what atoms used to be for physics:
an entity without further parts [6]. In category theory, monads are something
closely related to natural transformations [11]. In the world of programming,
monads are a combination of two long-known concepts, which both go back at
least to the 1970’s: continuation-based programming (as found e.g. in [20] and
implicitly even in [7, 9, 14]) combined with information hiding. The technical
details are a little intricate (see the Appendix), but they happen to meet the
category-theoretic monad axioms, which justifies the name [19]. Since this is
not a paper on monads, we defer their detailed definition to the Appendix and
content ourselves here with an informal characterization.

– We use here the so-called state monads; these have an internal (hidden)
“state”, which in our case is the heap.

– A monad m essentially is a pair of functions:
• One function, m.evolution, effects a hidden evolution of the state.
• The other function, m.observer, allows visible observations about the

state.

S1

· · ·
S2

am.observer

m.evolution

observable

hidden
m

– The type of a monad is denoted as M[α], where α is the type of the observa-
tions. (The state is hidden!)

sort M[α] selectors evolution observer

aux evolution : M[α]→ (State→ State)
aux observer : M[α]→ (State→ α)

Typical examples are found in the IO-Monad, which encapsulates all the
standard input/output commands:

spec IO = extend Monad(System) rename M[α] = Io[α] by
-- read a character
fun read : Io[Char]
fun read.observer = � content of keyboard register�
fun read.evolution = � display keyboard register on screen�

. . .
Here the (hidden) evolution even concerns the global state of the operating sys-
tem. The program can only utilize the visible observation, that is, the character
just read.

3.2 Composition of Monads

The fundamental operation on monads is their sequential composition (recall
that monads are pairs of functions):

– m1 ; m2:
First apply m1 : M[α], which leads to some evolution of the internal state (the
observable value is ignored). Then m2 : M[β] is applied to the new state.

(· · ·
S0

) (
a1

S1

) (
a2

S2

)
m1 m2

– m1 ; f:
First apply m1 : M[α], which leads to some evolution of the internal state.
Then apply the continuation function f : α→ M[β] to the observable value of
the new state. This creates the second monad m2 : M[β] which is then applied
to the new state.

(· · ·
S0

) (
a1

S1

) (
a2

S2

)
m1 m2 = f(a1)

3.3 Iterators on Monads

Much of the power of monads lies in their flexibility, which makes it easy to add
all kinds of useful operations (by contrast to imperative languages, where most
of these operators must be predefined by the language). Typical points in case
are “exception handlers”, “choice operators”, “iterators” etc. In this paper we
only need two iterators.

-- infinite repetition
fun forever : (m : M[α])→ M[α] = m ; forever(m)
-- repeat as often as possible

fun iterate : (m : M[α])→ M[α] =
if applicable (m) then m ; iterate(m)

else nop fi

The first operator is used to model continuously running (parallel) systems. The
second operator repeats a monadic operation as long as possible. The construct
applicable(m) yields false when the monadic operation m has a formally stated
precondition that does not hold.

3.4 Casting to Monads

Of particular importance for readability is the automatic casting of functions
to monads. For example, given the function

fun round : Real→ Int

we automatically associate two monadic operations to it:

fun round : Real→ M[Int]
fun round : M[Real]→ M[Int]

Intuitively, the monadic variants apply the original function to the observable
values. Functions with more than one argument are treated analogously.

A second casting is even more important in our context. It applies to the
hidden internal state. If this state has type T, then we lift all functions on T to
the monad. In our case, where T is Heap, this means

fun f : Heap→ α is lifted to fun f : M[α]
fun f : Heap→ Heap is lifted to fun f : M[Void]
fun f : Heap→ Heap× α is lifted to fun f : M[α]

In the first case, f is turned into an observer, and in the second case f only
effects the corresponding internal state transition. (Since there is nothing to be
observed, we need the “empty sort” Void here.) The third case has both an
observable value and an internal state transition (“side effect”). This lifting also
covers situations like f : α → Heap → β which is turned into f : α → M[β]. And
so forth.

The above principles are formally defined in a parameterized specification
Monad(State), which is given in the Appendix. In our application we have to
instantiate this as Monad(Heap), since the internal state is just the graph.

3.5 Specification of Monadic Heaps

Due to the automatic lifting, the instantiation Monad(Heap) provides the follow-
ing set of operations.

fun nodes : M[Set Node]
fun sucs : Node→ M[Set Node]
fun connect : Node× Node→ M[Void]
fun detach : Node× Node→ M[Void]
fun roots : M[Set Node]
fun free : M[Node]
fun new : M[Node]
fun recycle : M[Void]
aux reachable : Set Node→ M[Set Node]
aux black : M[Set Node]
aux gray : M[Set Node]
aux dark : M[Set Node]
aux white : M[Set Node]

Most remarkable is the operation new which had two results in the original
specification and therefore now has an observable value as well as an internal
evolution (“side effect”).

Along the same lines we can introduce the lifting of the operators monotone
and invariant. Here we have to lift each of the argument functions to monadic
form.

aux invariant : (f : M[α])→ (m : M[Void])→ Bool
post f.observer = f.observer ◦ m.evolution

aux invariant : (f : M[α])→ Bool
post ∀m : M[α] : invariant(f)(m)

-- monotonicity is analogous

Note that we have added a second form of the operator, which is a shorthand
for expressing that f is invariant for all possible monads. (This is the form that
we will mostly employ in the following.)

3.6 Intermediate Assessment of Monads

Given the above definitions, one may get the impression that monads are just
a way of mimicking classical imperative programming within the realm of func-
tional programming. Even worse: one can mimic the most problematic feature
of imperative programming, namely expressions with side effects.

This is to some extent true. But one can also put this positively: monads allow
us to apply imperative-style programming, wherever it is unavoidable (such as
input/output, which necessarily operates on the global system state). But we
can confine this style to a minimal fragment of our programming, by contrast to
imperative languages, where everything has to be programmed state-based.

However, there are more advantages. In monads the side-effects are encapsu-
lated and – above all – typed! In other words, this critical area is supervised by
the typing discipline of the compiler (by contrast to imperative languages, where
there is just one global hidden state). Moreover, monads are extremely flexible.
It is easy to add new and specialized constructs such as iterators or various kinds

of exception handlers. By contrast, imperative languages only provide a fixed,
predefined set of operators for these issues.

So our claim is that monads not only allow us to extend our algebraic speci-
fication techniques to certain kinds of imperative tasks (as will be elaborated in
the following case study), but also give us a superior programming model.

4 The Mutator-Collector System – A Simple View

We consider a system consisting of two parallel processes, the mutator and the
collector, which both operate on the same heap (see Program 1.1 in Section 1).
The mutator represents the activity of the user’s program, which operates on the
reachable part of the heap, the collector represents the process that recycles the
garbage nodes by adding them to the free list. Both processes work in parallel.
The following subsections describe the mutator and the collector in detail.

4.1 The Mutator

The Mutator can be almost any program – as long as it only works on the
black subgraph. This can be expressed by the specification of Fig. 2, which is an
excerpt from the overall specification in Fig. 1. In this diagram we have added

monotone white Mutator

monotone white Mut-Spec(Mut-Env) Collector invariant black

monotone white

roots, sucs,
new, connect, detach
white

Mutator-View Mut-Env

black

invariant black

Monad(Heap)

i p

r c

Fig. 2. The mutator’s specification

the most relevant aspects of the various specifications and morphisms. In detail:

– The upper diamond represents the instantiation of the parameterized speci-
fication Mut-Spec(Mut-Env) by the argument Collector. This requires that
the argument Collector meets the requirements of the formal parameter
Mut-Env, in particular the property invariant black.

– The lower diamond essentially expresses the fact that the mutator and its
environment (which will be the collector) have different views of the heap.

– Finally it can be seen that the property monotone white, which is established
by the mutator’s view of the heap, is inherited by the mutator’s specification
and thus also by the mutator itself.

Program 4.1 The mutator’s specification
spec Mutator-Spec (Mutator-Environment) =

import Monad(Mutator-View(Heap))
fun mutate : M[Void]
thm∗monotone white

morphism Mutator-View = only roots, sucs, connect, detach, new

1

2

3

4

5

In the following we list the concrete specification texts for the various parts
in Fig. 2.

The mutator can be an arbitrary program, as long as it only accesses the
heap through the restricted set of operations determined by Mutator-View. But
it expects that the environment (i.e. the collector) does not tamper with its
data structures. Therefore the mutator is characterized by the extremely loose
parameterized specification of Program 4.1.
Explanation of Program 4.1:

1 The mutator depends on the proper behavior of its environment, which is
given here as a parameter (see Program 4.2).

2 The mutator only has a restricted view of the heap. Therefore it bases on a
monad that is built over a suitably restricted version of Heap (see line 5).

3 The mutator is an arbitrary program (on the restricted view of the heap).
4 The mutator can at most increase the set of white nodes. (This is a “local”

theorem, since it is only valid for the Mutator-Spec itself, but not for the
parameter Mutator-Environment.)

5 The mutator has only access to the graph through the roots. It can follow
the arcs (using sucs), it can add arcs (but only between reachable nodes),
and it can delete (reachable) arcs. That is, all operations of the mutator are
confined to the black part of the graph. In addition, it may use the freelist
for the allocation of “new” nodes.

Correctness We must prove two things. (1) The theorem monotone white has to
hold. This follows immediately from the fact that all operations in Mutator-View
have the property monotone white as stated in Program 2.3. (2) The precondi-
tion G.connect(x, y) needs y /∈ white is also fulfilled. This immediately follows
from the fact that the operations roots, sucs and new can only yield black or
gray nodes.

The mutator’s environment According to Lamport’s rely/guarantee princi-
ple the proper functioning of virtually any instance of the Mutator will depend
on an acceptable behavior of the environment: it must never modify the existing
black subgraph. Therefore the environment of the mutator must be constrained
to a view of the heap monad that guarantees this invariant. This is specified in
Program 4.2.

Program 4.2 The mutator’s environment
spec Mutator-Environment =

constrain Monad(Heap) by
axm invariant black

1

2

3

In the overall system the mutator itself is defined by instantiating the pa-
rameterized specification Mutator-Spec by the Collector (see Fig. 2 and Pro-
gram 1.1). The instantiation Mutator-Spec(Collector) requires that Collector
is a valid instance of Mutator-Environment. Formally this means that there
must exist a specification morphism from the parameter Mutator-Environment
to the instance Collector (see Fig. 2). Hence it will be our task in the next
section to design the collector in such a way that it meets this requirement. In
other words: the collector has to guarantee the property invariant black.

Summing up. The above Programs 4.1 – 4.2 provide the loosest possible charac-
terization of the idea of “mutator”. Any program that meets these – very weak
– constraints is an instance of this specification.

4.2 The Collector (Naive View)

The specification of the collector is analogous to that of the mutator. Its structure
is depicted in Fig. 3, which also is an excerpt from the overall specification in
Fig. 1. As in the mutator diagram in the previous section we have added the

Collector
invariant black

white
= ∅ ⇒ ♦ gray
= ∅

monotone white Mutator Coll-Spec(Coll-Env) invariant black

white
= ∅ ⇒ ♦ gray
= ∅

white

monotone white Coll-Env Collector-View invariant black

recycle, white
black

Monad(Heap)

ip

c r

Fig. 3. The collector’s specification

most relevant aspects of the various specification boxes and morphism arrows.
In detail:

– The upper diamond represents the instantiation of the parameterized speci-
fication Coll-Spec(Coll-Env) by the argument Mutator. This requires that
the argument Mutator meets the requirements of the formal parameter
Coll-Env, in particular the property monotone white.

Program 4.3 The collector’s specification
spec Collector-Spec (Collector-Environment) =

import Monad(Collector-View(Heap))
fun collect : M[Void] = forever(recycle)
thm∗invariant black

thm white
= ∅ ⇒ ♦ gray
= ∅
morphism Collector-View = only recycle

1

2

3

4

5

6

– The lower diamond essentially expresses the fact that the collector and its
environment (which will be the mutator) have different views of the heap.

– The property invariant black, which is established by the collector’s view
of the heap, is inherited by the collector’s specification and thus also by the
collector itself.

– But here we also would like to ensure the liveness property that every garbage
node will eventually be recycled to the free list. However, this would be
an overspecification. Suppose that the timing of the mutator and collector
happen to be such that the newest garbage will be continuously recycled
and the collector never looks at the old garbage. This is perfectly okay as
long as the mutator always obtains a new cell from the freelist, when it
needs one. This weaker requirement is captured by the temporal formula
white �= ∅ ⇒ ♦ gray �= ∅, which states that the gray freelist cannot remain
empty, when there are white garbage cells available.

This behavior is captured in Program 4.3. It reflects a naive design, where
the collector continuously recycles white nodes.
Explanation of Program 4.3:
1 The collector depends on the proper behavior of its environment, which is

given here as a parameter (see below).
2 The collector only has a restricted view of the heap (see below).
3 The collector repeatedly recycles a white (garbage) node to the freelist.
4 The collector does not tamper with the black subgraph. (This is a “local”

property.)
5 This liveness property states that the freelist cannot stay forever empty,

provided that there are garbage cells available. (Note that this holds “glob-
ally”, that is, even in the presence of concurrent processes.)

6 The collector is restricted to recycling (white) garbage nodes to the (gray)
freelist.

Correctness We have to prove the two theorems. (1) The invariance of the black
subgraph follows immediately from the fact that the – only relevant – operation
recycle has this property as stated in Program 2.3. (2) The proof of the liveness
property is also simple: Since we assume a fair merging between the collector
and its environment (the mutator), there will always eventually be a recycle

Program 4.4 The Collector’s Environment
spec Collector-Environment =

constrain Monad(Heap) by
axm monotone white

1

2

3

operation. And when there are garbage cells available, one of them will be added
to the freelist. This argument depends on the constraint that the environment
does not decrease the set of white nodes.

The collector’s environment The collector requires a few constraints for its
environment in order to function properly. Essentially the environment must
not turn white nodes into black or gray ones. (But it may produce white nodes
without interfering with the collector’s working.) This is stated formally in Pro-
gram 4.4.

Summing up. The collector is specified here as a concrete program that continu-
ously recycles white nodes. This meets our intended goals of having a process that
assists the mutator without interfering with it. The mutual non-interference is
guaranteed by the parameter constraints monotone white and invariant black

that are met by the respective instantiations. Formally:
Collector-Spec � Mutator-Environment
Mutator-Spec � Collector-Environment

Unfortunately there is a major deficiency in our solution that calls for a much
more intricate design, as will be elaborated in the next section.

5 Making the Collector Realistic

Our design so far is correct, but it has a major deficiency: It is not executable!
The reason lies in the operation recycle, on which the collector is based. Recall
its definition from Section 2.

fun recycle : (H : Heap)→ (H′ : Heap)
pre H.white �= ∅
post H′.free = H.free⊕ n where n ∈ H.white

The operation has to pick a white node. But white is a non-excutable observer
operation! And it is a well-known fact that this operation cannot be made exe-
cutable easily – in particular, when it is running in parallel to a mutator.

In the following we want to address this issue, that is, we want to make the
collector practical. To achieve this goal we need to replace the dependency on
the non-executable function white by something that is executable and does
not sacrifice correctness. In doing so, our major problem is the existence of the
concurrently operating mutator.

The emphasis of the following derivation is not so much the topic of concur-
rent garabge collection as such (this is well-known from the literature). Rather
we want to show how the programming can be done by replaying our original de-
sign while using appropriately modified (and more complex) specifications. This
way we split the overall derivation into two parts: First, we develop an easily
understandable but non-executable design; then we extend it to a less under-
standable, but executable and still correct design. The first part of this process
has been demonstrated in the preceding sections, the second part will be shown
in the following.

5.1 The Basic Idea

From the literature it is well known that our task cannot be solved without
making major changes to the graph and its basic operations: we have to be able
to mark nodes explicitly. However, we invert the traditional way of proceeding
and mark the non-reachable (white) nodes. (As a matter of fact, this is only a
change of terminology.)

The underlying idea is illustrated in Fig. 4, which presents a snapshot during
the algorithm. On top we have the (black) roots and the (gray) root of the freelist.

workset

ac
ti
ve

Fig. 4. Cleaning phase (snapshot)

The shaded area represents the active nodes, which still need to be visited during
the cleaning phase. The dark-shaded subarea represents the current workset.
Hence, the shaded area of active nodes is defined as the nodes reachable from
the workset.

The passive black and gray nodes behind the workset have already been
cleaned of their marks, whereas all other nodes – including the white ones – still
carry their marks.

Program 5.1 The extended collector
spec XCollector-Spec (XCollector-Environment) =

import Cleaner (XCollector-Environment) only clean

import Scavenger (XCollector-Environment) only scavenge

fun collect : M[Void] = forever(clean ; scavenge)
thm∗invariant black

thm white
= ∅ ⇒ ♦ gray
= ∅

1

2

3

4

5

6

The cleaning phase repeatedly picks a node from the workset, cleans its
mark, and adds all its marked successors to the workset. This continues until
the workset is empty. Then all remaining marked nodes are white.

At this point we can start the scavenging phase, which simply recycles all
marked nodes (which are necessarily white) to the freelist.

Of course, in the meanwhile the mutator may have turned some further
black nodes into white ones. Therefore the marked nodes will in general only be
a subset of the white ones. But this is no problem, since these unmarked white
nodes will be caught in the next round of the collector.

Note. In the literature we find two major strategies (see [3]).

– Snapshot : At the beginning of each major collector cycle we (conceptually)
take a snapshot W = white of the white nodes. Then we start cleaning the
nodes, which finally establishes the property marked = W. Due to its mono-
tonicity the set white may at most grow during that time, which guarantees
our desired goal marked = W ⊆ white. (This approach is e.g. taken in [21].)

– Incremental update: We only guarantee that eventually marked ⊆ white will
be achieved. (This approach has been taken in [1, 17, 4].) We will follow here
this approach, essentially in the style of Dijkstra et al. in [1].

The modified collector program This two-phase process is captured in Pro-
gram 5.1, which is a refinement of the original collector in Program 4.3.
Explanation of Program 5.1:
2-3 The two phases of the new collector are defined in separate specifications

(see below). Both rely on the appropriate behavior of the environment.
4 The original naive recycling of white nodes is now replaced by the more

elaborate repetition of the two phases clean and scavenge.
5-6 The new collector must still fulfil the requirements that it does not interfere

with the black subgraph and that it will keep the freelist filled as long as
possible.

Correctness. We need to show three things. (1) The invariance of the black
subgraph is inherited from the specifications of Cleaner and Scavenger. (2)
The liveness property that at least some of the white nodes will eventually make
it to the freelist can be shown analogously to our original specification; therefore

Program 5.2 The collector’s environment
spec XCollector-Environment =

import Cleaning-Environment

import Scavenging-Environment

axm monotone white

thm invariant marked

thm invariant (marked ∩ dark ⊆ active)

1

2

3

4

5

6

Program 5.3 The cleaning phase
spec Cleaner (Cleaner-Environment) =

import Monad(Cleaning-View(XHeap))
fun clean : M[Void] = (workset← roots ∪ {free} ; marked← nodes ;

iterate(unmark))
post marked ⊆ white

thm∗invariant black

thm invariant (marked ∩ dark ⊆ active)

morphism Cleaning-View = only nodes, roots, free, marked, workset, unmark

1

2

3

4

5

6

7

8

we omit the proof here. (3) The well-definedness of the program requires that
(in line 4) the precondition of scavenge is fulfilled (see Program 5.5). This is
ensured by the postcondition of clean (see Program 5.3).

The collector’s adapted environment The proper working of the collector
still depends on properties that must not be violated by the concurrently ex-
ecuting environment (that is, by the mutator). But due to our more intricate
design, these requirements are now stronger than before. This is specified in
Program 5.2.
Explanation of Program 5.2:
2-3 The collector’s environment (that is, the mutator) must meet the require-

ments of both phases of the collector.
4 As in the original version we do not want the mutator to recycle white

nodes; so it may at most create white nodes.
5-6 For easier readability we repeat the requirements of the Cleaner and the

Scavenger on the environment here explicitly. They will be explained in
the pertinent specifications.

5.2 The Cleaning Phase

The cleaning phase removes the marks from all reachable nodes, including the
freelist. This is specified in Program 5.3.
Explanation of Program 5.3:
2 As all other programs the cleaner has a restricted view of the heap (XHeap

is specified in Program 5.8).

3 The roots (including that of the freelist) are the initial workset. And all
nodes are initially marked. (In an optimized version this would be amalga-
mated with the preceding scavenging phase.) The notation marked← nodes
is a shorthand for expressing that the observer (selector) marked now has
the value nodes.

4 Then we iterate the operation unmark until its precondition no longer holds,
that is, until the workset has been used up (see Program 5.8 below).

5 When cleaning is finished, only white nodes have marks.
6 The invariance of the black subgraph is guaranteed by the cleaning phase

as well.
7 As a central invariant (during the cleaning phase) it is required that all

marked non-white nodes will still be visited, that is, are reachable from the
workset (which is the meaning of active).

8 The cleaner only needs operations for initializing the workset and the marked
set and for unmarking nodes.

Correctness. We have to prove three things. (1) The invariance of the black
subgraph is entailed by the – only relevant – operation unmark, since it does not
influence the black nodes or edges (see Program 5.8). (2) The property (marked∩
dark ⊆ active) is established by the initial setting of the workspace and the
marked set, and is kept invariant by the operation unmark. It is also respected
by the environment, as stated in Program 5.4. (3) The postcondition of clean is
indeed established by the definition of the function. This can be shown as follows:
The operation iterate repeats unmark until its precondition is violated. This
precondition is workset �= ∅ (see the specification XHeap in Program 5.8). Using
the definition active = reachable(workset) and the invariance of marked ∩
dark ⊆ active we can therefore deduce

workset = ∅
� active = ∅
� marked∩ dark ⊆ ∅
� marked ⊆ white

Note. Strictly speaking, we should also prove the following liveness property:
when there are white nodes at the beginning of clean then there will be marked
nodes at the end of clean. This is ensured by the definition of clean together
with the requirement invariant marked on the the environment. In order not
to overload the presentation we omit this part from the formal specification.

The cleaner’s environment The invariants, on which the cleaner is based,
must also be respected by its environment. This is specified in Program 5.4.

5.3 The Scavenging Phase

The scavanging phase relies on the precondition that all marked nodes are white,
which has been established by the cleaning phase. Therefore it can safely recycle

Program 5.4 The cleaner’s environment
spec Cleaner-Environment =

constrain Monad(XHeap) by
axm invariant marked

axm invariant (marked ∩ dark ⊆ active)

1

2

3

4

Program 5.5 The scavenging phase
spec Scavenger (Scavenger-Environment) =

import Monad(Scavenging-View(XHeap))
fun scavenge : M[Void] = iterate(recycle)

pre marked ⊆ white

thm∗invariant black

thm invariant (marked ⊆ white)

morphism Scavenging-View = only recycle

1

2

3

4

5

6

7

all marked nodes, since this meets the original requirement that white nodes be
recycled.

Explanation of Program 5.5:

2 As usual, the scavenger has a restricted view of the heap.
3-4 Scavenging recycles all marked nodes (which are guaranteed to be white

due to the precondition).
5 As usual, the invariance of the black subgraph needs to be respected.
6 During the scavenging phase we must ensure that the marked nodes remain

white.
7 The scavenger only needs the operation recycle.

Correctness. (1) The invariance of the black subgraph follows trivially from the
fact that recycle only changes the marking and the freelist, but never an edge
(see Program 5.8). (2) That the marked nodes are always a subset of the white
nodes can be seen as follows. The operation recycle only makes white nodes gray
when it simultaneously unmarks them (see Program 5.8). And the environment
(see Program 5.6) does not change the markings and does not decrease the set
of white nodes.

Program 5.6 The scavenger’s environment
spec Scavenger-Environment =

constrain Monad(XHeap) by
axm monotone white

axm invariant marked

1

2

3

4

Program 5.7 The adapted mutator
spec XMutator-Spec (Mutator-Environment) =

import Monad(Mutator-View(XHeap))
fun mutate : M[Void]
thm∗monotone white

thm∗invariant marked

thm∗invariant (marked ∩ dark ⊆ active)

1

2

3

4

5

6

5.4 Adapting the Mutator

In our original version the mutator was not even aware of the existence of the
collector. This is, unfortunately, no longer true in our new design. As can be
seen in the specification XCollector-Environment in Program 5.2 above, there
are now considerably more intricate requirements that are needed for the proper
working of the collector.

There are indeed situations where the mutator can interfere with the collec-
tor. This can be seen from the example in Figure 5. A demonic mutator could

A B

C

A B

C

(a) (b)

Fig. 5. A demonic mutator

alternate the arc between the two situations (a) and (b). When the node A is in
the workset and currently considered during situation (a) and later on node B
is considered during situation (b), then the cleaner will miss the black node C
and leave it marked. This violates the invariant that all marked dark nodes are
active and thus the correctness of the algorithm. Therefore the mutator has to
ensure that this invariant is kept intact. (This has been formally required in the
specification XCollector-Environment in Program 5.2 and therefore could not
go undetected in the sequel.)

These stronger constraints in XCollector-Environment force us to establish
corresponding theorems in the specification of the mutator in order to allow
the instantiation of the parameterized specification. Evidently, the deletion of
edges does not cause problems. But the addition has to take the marking into
consideration. Therefore we have to base the mutator on an adapted view of the
heap.

Explanation of Program 5.7:

2 The extended mutator has the same view on the heap as the original mutator
(but some operations will be modified as defined in the specification XHeap
in Program 5.8).

4-6 These are the properties requested by the specification of the collector’s
environment.

Correctness. As usual, all theorems are essentially inherited from the corre-
sponding properties of the basic operations of XHeap in Program 5.8. (1) The
monotonicity of the white nodes follows as in the original version. (2) None of
the available operations changes the marking. (3) For this property all opera-
tions except connect are harmless. For connect we therefore have to modify its
original definition (see XHeap in Program 5.8): when y is marked and dark, we
have to ensure that it is active. (Without this modification it could happen that
x has already been cleaned and is no longer active; this would leave y non-active
as well.)

Note that by this new definition y may be added to the workset by the
mutator, while the collector is in its scavenging phase. Then y will enter the
next cleaning phase already as a member of the workset. But this is harmless.

5.5 Adapting the Original Heap Specification

The need for marking affects the heap fundamentally. Therefore we have to
extend our specification accordingly, naming it XHeap.

Explanation of Program 5.8:

1 XHeap extends the original specification Heap by a few operations and
properties. But it also replaces the original operations recycle and connect
by modified definitions.

3 We add a set of marked nodes to the graph.
4 We also add a workset of nodes to the graph.
5-6 The nodes reachable from the workset are “active”.
7-12 Unmarking takes a node from the workset, unmarks it, and adds all

marked successors to the workset.
13-18 Recycling now takes a marked node (which – during the algorithm – is

known to be white) and adds it to the freelist.
19-22 The addition of arcs has to be redesigned according to Fig. 5. If we connect

a marked node to an unmarked node, we have to ensure that the marked
node is active. This is most easily achieved by adding it to the workset.

As a result of these extensions the new sort XHeap.Heap is a subtype of
the old sort Heap.Heap. (In object-oriented terminology this is referred to as
inheritance.)

Program 5.8 The extended heap
spec XHeap = extend Heap except recycle, connect by

sort Heap extend by selectors marked, workset
fun marked : Heap→ Set Node

fun workset : Heap→ Set Node

-- reachable from workset is called active
aux active : (H : Heap)→ Set Node = (H.reachable)(H.workset)
-- unmarking has to be provided
fun unmark : (H : Heap)→ (H′ : Heap)

pre H.workset
= ∅
post let n ∈ H.workset in

H′.workset = H.workset ∪ (H.sucs(n) ∩ H.marked)� n

H′.marked = H.marked � n

-- recycling needs to be modified
fun recycle : (H : Heap)→ (H′ : Heap)

pre H.marked
= ∅
post let n ∈ H.marked in

H′.marked = H.marked � n

H′.gray = H.gray ⊕ n

-- connecting need to be modified
fun connect : (x : Node, y : Node)→ (G : Heap)→ (G′ : Heap)

post G′.sucs(x) = G.sucs(x)⊕ y

x /∈ G.marked ∧ y ∈ G.marked ⇒ G′.workset = G.workset ⊕ y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

5.6 Properties of XHeap

As a result of our modifications and extensions, the operations of XHeap now
have all the properties that we presupposed during our development. Since most
of them are evident, we only list a representative selection in Program 5.9.
Explanation of Program 5.8:

1 We add some useful properties to our specification XHeap.
3-4 The new operations needed for the collector also respect the invariance of

the black subgraph.
5 Recycling respects the main invariant of the scavenging phase.

Program 5.9 Properties of the extended heap
spec XHeap = extend Heap except recycle, connect by
. . .

thm invariant(black)(unmark)
thm invariant(black)(recycle)
thm invariant(marked ⊆ white)(recycle)
thm invariant(marked)(connect)
thm monotone(white)(connect)

. . .

1

2

3

4

5

6

7

8

6-7 The new connect operation respects the fundamental requirements of the
collector.

5.7 Variations on the Theme

Line 22 of Program 5.8 deserves further discussion, since it is the place where
the various algorithms in the literature differ (see [3]).

– The most conservative approach is taken by Dijkstra et al. in [1]. They add
y to the workset even when it is not marked. That is, line 22 has no longer
a precondition and thus reads

G′.workset = G.workset⊕ y
– While Dijkstra’s algortihm pushes the wave-front of the workset forward,

Steele [17] pushes it back a little by adding the source node x to the workset
instead of the target node y. Here, line 22 reads

x /∈ G.marked∧ y ∈ G.marked⇒ G′.workset = G.workset⊕ x
Termination is a little trickier here, but this variant is likely to catch more
garbage cells in each cycle. (Note: In Steele’s algorithm the mutator only
makes the node active when the collector is in its cleaning phase. So it must
also be aware of the collector’s current phase.)

– If we wanted to mimic the snapshot algorithm of Yuasa [21], we had to change
the operation detach(x, y) as well. Since y was in the black set, when we
made the snapshot W, we have to clean it as well. That is, y has to be added
to the workset.

6 Conclusion: Assessment of Methodology

The underlying principle of our derivation is the development of programs by re-
finement and composition of specifications as it has been worked out thoroughly
in the Specware methodology and tools. The fundamental notion here is that

A B
ϕ

Fig. 6. Morphism

of a morphism ϕ from a specifcation A to a specification B (see Figure 6). Such
a morphism essentially has two aspects:

1. Syntactic part : Each sort and function symbol of A has to be mapped to a
corresponding sort and function symbol of B such that the proper typing of
the functions is preserved.

2. Semantic part : Every property of A must be retained in B (modulo the syn-
tactic renaming). In other words, B is more constrained than A.

It should be kept in mind that the stronger constraints in B entail that B has
fewer models.

Parameterized Specifications Parameterized specifications and their instan-
tiations can be represented by diagrams of the form depicted in Figure 7. The for-

Monad(Heap)

Monad(State) Heap

State

p

p

Fig. 7. Instantiation of parameterized specifications by colimit

mal parameter State is included in the parameterized specification Monad(State).
This inclusion is depicted by the special arrow p . If another specification
– here Heap – shall be used as an argument, then it must meet all requirements
of the parameter (up to renaming). In other words, there must be a morphism
from the parameter State to the argument Heap. For such a diagram with two
morphism we can form the colimit, which automatically builds the instantiated
specification Monad(Graph).

However, there was a complication in several of our examples, which led us
to the shorthand notation thm∗ for the “locally” valid theorems. This corre-
sponds to the situation of Fig. 8 (where the occurences of M-Spec on the left
and right refer to the same specification). Consider the situation in the middle.

Mutator Collector

M-Spec + M-Env C-Spec + C-Env

M-Spec C-Spec

invariant black

M-Spec

monotone white

invariant marked

M-Env

invariant black

C-Env

monotone white

invariant marked

p p

p p

Fig. 8. The role of “local” theorems

The specification C-Spec fulfills the property invariant black, the specification
C-Env fulfills the properties monotone white and invariant marked. But their
combined specification C-Spec+ C-Env possesses neither property.

To ease readability we did not want to introduce too many little specifica-
tions that are only needed for technical reasons. Therefore we preferred to write
the diagram of Fig. 8 in the compactified form of the diagram in Fig. 9. Here
we amalgamate e.g. C-Spec and C-Spec + C-Env into a single parameterized

Mutator Collector

M-Spec(M-Env) C-Spec(C-Env)
∗invariant black

M-Spec(M-Env)
∗monotone white
∗invariant marked

M-Env

invariant black

C-Env

monotone white

invariant marked

pp

p p

Fig. 9. Compact form of Fig. 8

specification C-Spec(C-Env). Analogously for M-Spec. The price to be paid is
that we need to introduce special syntax for those properties that in Fig. 8 were
encapsulated in C-Spec.

“Replaying” In the second part of our case study we had to modify our original
specification Heap into the specification XHeap. This induces e.g. the subdiagram
in Fig. 10. The morphism from Heap to XHeap induces the other morphisms as

Monad(Heap) Monad(XHeap)

Monad(State) Heap XHeap

State

p p

p

Fig. 10. Instantiation of parameterized specifications by colimit

well. This way we obtain a “copy” of the whole development, now based on
XHeap instead of Heap.

References

1. E. Dijkstra, L. Lamport, A. Martin, C. Scholten, and E. Steffens. On-the-fly
garbage collection: An exercise in cooperation. Comm. ACM, 21(11):965–975,
Nov. 1978.

2. P. Hudak. The Haskell School of Expression. Cambridge University Press, 2000.
3. R. Jones and R. Lins. Garbage Collection. John Wiley and Sons, 1996.
4. H. Kung and S. Song. An efficient parallel garbage collection system and its

corectness proof. In IEEE Symp. on Foundations of Comp. Sc., pages 120–131.
IEEE Press, 1977.

5. L. Lamport. Simple approach to specifying concurrent systems. Comm. ACM,
32(1):32–45, 1989.

6. G. W. Leibnitz. Vernunftprinzipien der Natur und der Gnade – Monadologie. Felix
meiner Verlag, 1982.

7. Z. Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.

8. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer Verlag, 1992.

9. J. McCarthy. Towards a mathematical science of computation. In C. Popplewell,
editor, Information Processing 6, pages 21–28. North-Holland, 1963.

10. J. McDonald and J. Anton. Specware – producing software correct by construction.
Technical Report KES.U.01.4, Kestrel Institute, Palo Alto, March 2001.

11. E. Moggi. Notions of computation and monad. Information and Computing, 93:55–
92, 1991.

12. D. Pavlovic and D. R. Smith. Composition and refinement of behavioral specifica-
tions. In Proceedings of Sixteenth International Conference on Automated Software
Engineering, pages 157–165. IEEE Computer Society Press, 2001.

13. P. Pepper. Funktionale Programmierung in Opal, ML, Haskell und Gofer. Springer
Verlag, 2002.

14. J. Reynolds. On the relation between direct and continuation semantics. In
J. Loeckx, editor, Proc. 2nd Coll. on Automata, Languages, and programming,
Lecture Notes in Computer Science 14, pages 141–156. Springer Verlag, 1974.

15. D. Smith. Designware: Software development by refinement. In Proc. Eighth Int.
Conf. on Category Theory and Computer Science, Edinburgh, Sept. 1999.

16. Specware. Documentation www.specware.org/doc.html. 2002.

17. G. Steele. Multiprocessing compactifying garbage collection. Comm. ACM,
18(9):495–508, Sep. 1975.

18. G. Tel, R. Tan, and J. van Leeuwen. The derivation of graph marking algo-
rithms from distributed termination detection protocols. Science of Comp.Progr.,
(10):107–137, 1988.

19. P. Wadler. How to declare an imperative. ACM Computing Surveys, 29(3):240–263,
1997.

20. M. Wand. Continuation-based program transformation strategies. J.ACM,
27(1):164–180, 1980.

21. T. Yuasa. Real-time garbage collection on general-purpose machines. Journal of
Software and Systems, 11(3):181–190, 1990.

A Appendix: More on Monads

This is not a paper on monads. But to make it self-contained, we have to specify
our notion of monads (which slightly varies from the classical views given in the
literature.) Monads are a combination of continuation-based programming with
the principle of information hiding. This is directly reflected in our specification
in Program A.1.
Explanation of Program A.1:

1 Monads are based on some internal type that shall be hidden. This type
is often referred to as the “state”. Since there are many possibilities for
concrete kinds of “state”, we parameterize the whole specification by this
type.

Program A.1 Specification of monads
spec Monad (type State) =
-- The (generic)monad type
sort M[α]selectors evolution observer

-- coalgebraic view
aux evolution : M[α]→ (State→ State)
aux observer : M[α]→ (State→ α)
-- yield a value
fun yield[α] : α→ M[α]
def (yield a).evolution = id

def (yield a).observer = K a

-- composition of monads
fun (;)[α, β] : M[α]× M[β]→ M[β]
def (m1 ; m2).evolution = m2.evolution ◦ m1.evolution
def (m1 ; m2).observer = m2.observer ◦ m1.evolution
-- composition of monad with continuation
fun (;)[α, β] : M[α]× (α→ M[β])→ M[β]
def m1 ; f = (f ◦ m1.observer) S (m1.evolution)
-- evaluation of the monad
fun eval[α] : M[α]→ State→ α
def eval(m)(init) = (m.observer)(init)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

3 Monads provide a generic type M[α], where (each instance of) α represents
the observable values. For example, in the input/output monad readInt
would be of type M[Int].

5-6 The type M[α] is coalgebraically characterized by two functions. evolution
yields a function for state transitions and observer yields a function for
observing the states.

8-10 The first fundamental operation on monads is yield(a), which leaves the
state unchanged and makes a the next observable value. (The operator K
is the constant combinator K a b = a.)

12-13 The second fundamental operation on monads is their sequential compo-
sition. The combined evolution effected by (m1 ; m2) is the composition of
their individual evolutions. And the combined observer is the observer of
m2 after the evolution of m1.

16-17 One often does not have a fixed second monad m2 in the sequential com-
position; rather one constructs it from the observable value a of the first
monad m1 with the help of a continuation function f; that is, m2 = f(a).
This can be expressed very concisely with the help of the S-combinator
(g S h)x = (g x)(h x).

19-20 Evaluation of a monad m in some initial state init simply is the applica-
tion of m’s observer function to init. Since m usually is a long sequence
of monadic operations, eval yields the observation at the end of this
sequence.

A.1 Lifting to Monads: Atomic Monads

In Section 3 we have presented various liftings for “normal” operations to monadic
operations. Now we want to show the formal definitions: For example

fun round : Real→ Int
has the two monadic liftings

fun round : (a : Real)→ M[Int] = yield(round a)
fun round : (m : M[Real])→ M[Int] = yield(round m.observer)

The second kind of automatic lifting for Monad(Heap) applies to functions on
Heap. Note the overloading!

fun f : Heap→ α is lifted to fun f : M[α]
def f.observer = λH : Heap . f(H)
def f.evolution = id

fun f : Heap→ Heap is lifted to fun f : M[Void]
def f.observer = K nil
def f.evolution = λH : Heap . f(H)

Note that this lifting also covers situations like f : α → Heap → β which is
turned into f : α→ M[β]. And so forth.

This lifting provides an important notion that we will need in the following
to make some other notions precise: A monad m that has been obtained through
lifting is called an atomic monad. This includes yield (which is the lifting of
(K a)). In other words, the atomic monads are all those that are not obtained
by composition operators such as ‘;’ (and others that we have not mentioned in
this paper).

A.2 Temporal Logic for Monads

It may be elucidating to review the situation in the light of temporal logic [8].
In a liberal notation, where the nexttime operator ‘ ’ can also be applied to
non-boolean values, the preservation property may be written as

(fobserver = fobserver)

However, this kind of formula is not quite true. The reason is subtle. The tem-
poral operator implicitly quantifies over all states of the computation, whereas
our formula contains an additional quantification over all monadic operations.
Now recall that most of our specifications declare “local” monadic types that
are subtypes of the overall type M[α]. This induces an implcit filter for the quan-
tification; that is, we only refer to certain monadic operations. Consequently,
the states are restricted to those appearing immediately before and after these
selected monads.
Explanation of Program A.2:

3-6 Invariance preserves equality under the observation f.
7-10 Monotonicity preserves the order under the observation f. (For simplicity

we have restricted the operator to the only ordering that we need in our
paper, namely the subset relation.)

Program A.2 Temporal operators for monads
spec Monad (type State) =

· · ·
-- invariance
aux : (p : M[Bool])→ Bool

pre p.evolution = id

post ∀m : M[α] : p.observer ◦ m.evolution = true

-- monotonicity
aux : (f : M[α])→ M[α]

pre f.evolution = id

post ∀m : M[α] : f.observer = f.observer ◦ m.evolution

1

2

3

4

5

6

7

8

9

10

This phenomenon is well-known in temporal logic and has been addressed in
various ways, the simplest of which is the use of predicates at π ⇒ . . ., where the
at operator refers to the control points in the program. We feel that the typing
discipline provided by the monads is a more elegant solution to this problem
than the reference to the good old program counter. But this relationship needs
further investigation.

A.3 Concurrency for Monads

Finally it remains to consider the parallel operator.
fun | | : M[α]× M[α]→ M[α]
A full technical definition goes beyond the scope of this paper (it would in-

clude a discussion of the associativity of ‘;’ and of the notion of atomic monadic
operation). But the idea is straightforward: we may consider the parallel compo-
sition as the interleaving of the two monads, where the sequential composition
operator ‘;’ determines the interleaving points.

As a matter of fact, the monadic view provides a very clean approach to
interleaving. In A ‖ B each of the two processes (monads) A and B ultimately is
a word over the atomic monadic operations (in our application add, cut, new
etc.), where ‘;’ acts as the concatenation operator. Therefore computational
interleaving is indeed modelled as the interleaving of the two words.

In connection with our approach of composing specifications we obtain an-
other nice feature. Recall that the two monads A and B usually are words over
different subtypes of M[α], which has the aforementioned advantages for verifica-
tion. The interleaving then yields a word over the full type.

