
Evolving Specification Engineering

Dusko Pavlovic, Peter Pepper, Doug Smith

Email: {dusko,smith}@kestrel.edu, pepper@cs.tu-berlin.de

Kestrel Institute and Technische Universität Berlin

Abstract. The motivation for this work is to support a natural separa-
tion of concerns during formal system development. In a development-
by-refinement context, we would like to be able to first treat basic func-
tionality and normal-case behavior, and then later add in complicating
factors such as physical limitations (memory, time, bandwidth, hardware
reliability, and so on) and security concerns. Handling these complicat-
ing factors often does not result in a refinement, since safety or liveness
properties may not be preserved. We extend our earlier work on evolving
specifications (1) to allow the preservation of both safety and liveness
properties under refinement, and (2) to explore a more general notion of
refinement morphism to express the introduction of complicating factors.

1 Introduction

It is natural for developers to initially focus on essential requirements, and to
first consider only “normal” behaviors when writing specifications. Gradually,
through refinement, the developer can then strengthen the initial optimistic as-
sumptions, and handle the exceptional, unusual and abnormal cases, as well as
introduce stronger requirements.

However, this approach presents a conceptual problem for a formal specifica-
tion framework. Refining a specification by catching some exceptional behavior
may not preserve the liveness properties of the system. Refining a specification
by explicitly handling some exceptional behavior may not preserve its safety
properties. So the question is: which properties should the useful refinement
operations preserve?

In the present paper, this problem is formalized and solved in the framework
of Evolving Specifications (especs) [11]. In order to express and characterize the
conditions under which the relevant safety and liveness properties are preserved,
we extend the framework by temporal modalities. In order to capture the spe-
cific preservation properties, combining safety and liveness in a way suitable for
exception handling, we use guard intervals [9], spanned between the conditions
under which an operation may fire, and the conditions under which it must
fire. The capability to separate concerns for normal behavior from the excep-
tional cases opens an alley towards better understanding and implementing the
mechanisms to introduce new safety and security policies in a system, and their
semantic effects on a design.

2

1.1 A simple real-world example.

We illustrate our approach with a running example that is taken from the au-
tomotive domain: A modern car contains numerous devices such as radio tuner,
CD player, navigation system, mobile phone and so forth. We presume here that
all these devices are connected through a MOST bus (a modern optical bus that
is often used in European cars) such that the user interaction with all services
can take place over a common microphone, amplifiers and graphical display. The
MOST bus architecture [1] provides both synchronous and asynchronous chan-
nels (and also command channels) for the interconnection of devices. Throughout
this paper we will use (admittedly oversimplified) features of the MOST archi-
tecture as illustrating examples. The basic concept is illustrated in Fig. 1: All
devices – including the MOST bus itself – are considered as “components” (more
or less like in UML).

�component�

Most-System

Most-System

Silent

CD
Playing

Radio
Playing

stopCD
startCD

startRadio
stopRadio

startRadio

startCD

UML-style component Espec behavior specification

Fig. 1. The modes and transitions of a trivial MOST system

The behavior of a component is described in the espec formalism. For the
sake of illustration we consider an oversimplified two-device system consisting of
a radio and a CD player. This leads to three general modes, namely CD-Playing ,
Radio-Playing and Silent . Therefore Fig. 1 essentially describes the system from
the viewpoint of the MOST bus: At any given point in time either the radio is
playing or the CD player or none of them. There are six transitions, for which we
allow overloaded naming, as long as their source or target modes are different.

Each device requires four bus channels to connect with the amplifier. In a
natural specification development process, we would like to be able to simply
assume that four channels are available when transitioning, say, from Silent to
CD-Playing . Only later would we deal with abnormal situations in which that
is not the case, as illustrated in Section 5.

1.2 Background

In previous work we introduced Evolving Specifications (especs) as a framework
for specifying, composing, and refining systems [11, 12, 10]. This framework ex-
tends our earlier work on the algebraic/categorical specification of software [8],
which it still contains as a subframework. Especs add the dimension of stateful

3

behavior, and thus leads into the realm of system specifications. This approach is
in the tradition of many approaches in the literature to address issues of system
design by utilizing category-theoretic mechanisms (e.g. [3].)

Modes and Transitions Although formally our evolving specifications resem-
ble state machines, we prefer to speak of “modes (of operation)”, rather than
states. A specification usually describes how a system evolves from mode to
mode: e.g., a CD player, may be in the mode Playing , performing the various
activities within that mode, until a suitable event triggers a transition into an-
other mode, say Searching . From an intuitive semantic point of view, a mode
M can be viewed as a set of (finite or infinite) traces of states :

Beh(M) = { T | T = 〈S1,S2,S3, . . . 〉, Si |= Theory(M) } (1)

The modesM1,M2, . . . are specified by logical theories1 M1,M2, Therefore
the semantics of a mode Mi consists of all traces of states, which fulfill the
corresponding theory Mi, as is expressed in (1).

We remain completely abstract w.r.t. the specific nature of states in order
to encompass all kinds of underlying systems; therefore we only require them to
be models of the given theories. (Actually we also look into variants, where the
state traces are replaced or complemented by continuous behaviors, comparable
to hybrid automata.) Hence we focus solely on the modes from now on.

The modes of a system are connected by transitions (as illustrated in Fig. 2).
These transitions t are usually guarded, which we denote here as g � t.

M0

M0

M1

M1

M2

M2

g1 � t1

g2 � t2

Fig. 2. Modes and transitions

Note: Each mode is assumed to have an identity transition with guard true
and transition id (nothing changes). This transition – which we do not draw
explicitly in our illustrations – corresponds to “stuttering”, and is left to be
specified in later refinements.

Semantically, a transition such as g1 � t1 in Fig. 2 usually means that, when-
ever the guard g1 holds in some state Sj of M0, then the transition may be
taken. But it can only be taken in states where the guard holds. For reasons to

1 We essentially identify the modes with their theories; therefore we purposely distin-
guish them only by the font.

4

be seen in a moment we refer to these kinds of guards as safety guards. Safety
guards represent very weak and liberal constraints: They may hold arbitrarily
often during a mode without their transition being taken. In particular, guards
g1 and g2 of competing transitions (such as in Fig. 2) need not be disjoint.

But there is a second view of guards, where a transition such as g1 � t1 in
Fig. 2 means that, whenever the guard g1 holds in some state Sj of M0, then
the transition must be taken. Consequently, competing transitions must have
disjoint guards g1 and g2 . For reasons to become clear in a moment, we refer to
guards of this kind as liveness guards.

These semantic intuitions have led to the formalism of evolving specifications
[11]. Its main conceptual components are:

Transitions. The transition M1
g�t M2 is captured as an interpretation

M2
t−→M1, which rewrites the theory M2 in terms of the theory M1:

M2 |= q =⇒ M1 |= (g ⇒ t(q)) (2)

Within the category of specifications, such guarded transitions are modeled
as opspans of interpretations in the form

M1 −→ (M1 ∧ g)
t←−M2 (3)

The formal details of categorical semantics of evolving specifications can be
found in [11, 12]. Intuitively, the action t performed by a transition can be
construed as a predicate transformer.
Within this formal and intuitive framework, the guards allow two semanti-
cally relevant interpretations:

Safety guards. An occurrence of the transitionM1
g�t M2 in an execution

Q is enabled, when M1 ∧ g is satisfied for the variable assignments at that
point of the execution.

Liveness guards. An occurrence of the transitionM1
g�t M2 in an execu-

tion Q is forced, when M1∧g is satisfied for the variable assignments at that
point of the execution.

While the framework of [12] left the choice between these two interpretations
to the designer, deciding if the refinements should preserve safety or liveness,
in Section 3 below, we shall present a unified semantical framework, subsuming
both of the above interpretations.

Definition 1 A run of a system is a sequence of modesM0 M1 M2 . . .
for which there are transitions Mi

g�t Mi+1. The behavior Beh(Spec) of a
system specification is the set of all its runs.

1.3 Refinement

The main point of especs is to provide a precise and convenient framework
to specify the functions and behavior of software systems incrementally. The

5

main point of their categorical semantics is to provide a formal underpinning for
refinement and composition, in terms of morphisms and colimits.

The basic principle can be summarized as follows: As usual, a refinement
adds details, but preserves certain properties. Hence, the theory increases and
the set of models becomes smaller:(

Speca
ϕ Specc

)
=⇒

(
Beh(Speca) ⊇ Beh(Specc)

)
(4)

Due to the added details, one often refers to the original specification Speca as
the abstract model and to the refined specification Specc as the concrete model.

Speca
Ma

Ma

Na

Na

“abstract”

Specc
Mc

Mc

N 1
c

N1
c

“concrete”

N 2
c

N2
c

ϕ

ga � ta

g1
c � t1c

g 2
c � t 2

c

ϕ0 ϕ0

ϕ0

ϕ0

ϕ0

Fig. 3. Refinement of modes and transitions

As is illustrated in Fig. 3 it is possible that several modes of the concrete
model correspond to (“refine”) a single mode of the abstract model. And also
several concrete transitions may correspond to (“refine”) a single abstract tran-
sition (see [12]).

Definition 2 A refinement ϕ : Speca �� Specc as depicted in Fig. 3 consists
of two components:

– a graph morphism ϕ0 : Diagc
�� Diaga, assigning to each concrete mode

an abstract mode, and to each concrete transition an abstract transition,
which it refines;

– a tuple of traditional specification morphisms ϕN
1 : ϕ0(N) �� N , one for

each concrete mode N ∈ Diagc, telling how the specification of the mode N
refines the specification of the mode ϕ0(N).

Whereas this bipartite view of the structure preservation is rather familiar,
e.g. from theory of institutions [5], the treatment of the guards under refinement
is more intricate, since we need to distinguish safety guards and liveness guards.

6

Safety morphisms are required to preserve safety properties: the refinement
and the composition steps along the safety morphisms must not introduce
new runs — every run in the concrete system is a refinement of (or is simu-
lated by) some run of the abstract system.
To preserve only the enabled executions, the specification components ς1 of
a safety morphism ς : Speca �� Specc must satisfy, for every concrete
transitionMc

gc�tc Nc,

Mc |= (gc ⇒ ς1(ga)) (5)

where ga is the guard of the ϕ0-image of this transition.
This formalizes the fact that a concrete transition may only be taken if the
corresponding abstract transition may have been taken as well.

Liveness morphisms are required to preserve liveness properties: the refine-
ment and the composition steps along the morphisms must not introduce
new deadlocks, but guarantee that every trace in the abstract system in-
duces some refined trace in the concrete system.
To preserve all the forced executions, the specification components λ1 of
a liveness morphism λ : Speca �� Specc must satisfy, for every concrete
transitionMc

gc�tc Nc,

Mc |= (λ1(ga)⇒ gc) (6)

This formalizes the fact that whenever an abstract transition must be taken
then the corresponding concrete transition must be taken as well.

Every first order trace property can be expressed as a conjunction of a safety
property and a liveness property [2]. In order to specify refinements preserving
arbitrary first order properties of interest, it is therefore sufficient to assure that
both safety and liveness properties are preserved. A general method to realize this
by combining the two types of espec morphisms described above is presented in
Section 3. To motivate it, we first summarize a more special problem that drives
this paper.

1.4 The Problem to be Solved

In rare cases, the process of system design can be subdivided into refinement
steps where only safety or only liveness is preserved. In most cases, however,
a property required from the system inextricably combines liveness and safety
aspects. See [6] or [7] for examples.

Related to this is another issue: In many situations it is natural to first
specify the normal behaviors of the system, under some simplifying assumptions,
and to handle separately the exceptional behaviors, when these assumptions are
not satisfied. The refinement step where the exceptions are recognized does not
preserve liveness (since it blocks some runs), whereas the refinement step where
they are handled does not preserve safety (since it adds new runs).

This leaves us with two complementary tasks of refining the notion of espec
refinement, respectively capturing

7

1. general properties, which combine safety and liveness properties, and
2. exception recognition and handling.

The solutions of these two tasks will be outlined in Sections 3 and 4.2. As a
preparatory step we formalize in Section 2 the above remarks about the safety
guards and the liveness guards by defining an obvious interpretation of temporal
logics of especs.

2 Temporal evolving specifications (tespecs)

The temporal statements in an espec are expressed in a global language, common
to all modes. That is, the atomic formulas are given by the intersection of (the
signatures of) all mode theoriesMi. Over these we build temporal formulas using
the usual connectors from propositional logic and the two tense operators

© q (next)
qW r (waiting-for)

We define the validity of a (temporal) formula q in a certain modeM0 based on
its validity for all runs M0 M1 M2 . . . that begin with M0. Based on
the standard notion of validity (Mi |= q) for non-temporal formulas q, we define
the validity of the temporal formalas in the usual way:

M0 |=© q ⇐⇒ M1 |= q (7)
M0 |= qW r ⇐⇒ (∀i. Mi |= q) ∨ ∃k. (Mk |= r) ∧ (∀j < k. Mj |= q) (8)

Remark : Temporal formulas quantify over the coarse-grained modes (runs)
and not over the fine-grained internal states (traces) inside the modes.
Together with the usual connectors of classical logic, we can introduce the well-
known further temporal modalities

� q = qW ⊥ (henceforth)
♦ q = ¬�¬q (eventually)
q U r = qW r ∧ ♦ r (until)

(9)

Now we can formalize the statements from the Introduction. Actually, much
stronger and more precise statements could be proved.

Definition 3 A safety property has the form � q. A liveness property has the
form ♦ q.

The following lemma points to the way in which the (global) safety and
liveness properties are logically related to the (local) guards of transitions.

8

Lemma 1 (i) A system described by an espec satisfies a safety property � q,
if and only if in each run (i) the property q is satisfied at the initial mode M0,
and (ii) it is invariant under every enabled transition, i.e.

M0 |= q
and (M |= q ∧ g) =⇒ (N |= q), for all M g�t N (10)

(ii) A system satisfies a liveness property ♦ q, if and only if in each
run either the property q is satisfied at the initial mode, or there is an enabled
transition, where q is established.

M0 |= q
or (M |= ¬q ∧ g) ∧ (N |= q), for some M g�t N (11)

Proposition 1 An espec morphism preserves safety (resp. liveness) properties
if and only if it preserves all safety (resp. liveness) guards.

Note: The characterization of liveness in the definitions (8) and (9) and in
Lemma 1(ii) reflects the liveness view of branching-time logic in the Manna-
Pnueli style, where ♦ q essentially means that in every run there is at least one
state where q holds. If we would instead internalize the quantification over all
runs into the definition of the validity, we would obtain the view of the temporal
logic CTL∗. This view represents the very weak property that there is at least
one possible run containing at least one state, where q holds. So our approach
could be geared towards both variants without much effort.

3 Guard Intervals

In the previous sections we have been working with the concepts of safety and
liveness guards, but without notational means to distinguish them. Since many
specifications combine both safety and liveness aspects,it turns out to be useful
to bring them together. This leads to the idea of guard intervals, originally
implemented in the CommUnity system [9].

M1

M1

M2

M2

〈f, p〉� t

Definition 4 A guard interval is given in the form 〈f, p〉, where as an addi-
tional constraint the implication f ⇒ p must hold.

– f is the forcing guard, i.e. the liveness guard that determines which (good)
things must happen;

– p is the permitting guard, i.e. the safety guard that says which things are
not bad and may happen.

Let S be some state in a run ofM1. Then the transitionM1
〈f,p〉�t M2 is

9

– enabled if S |= p;
– forced if moreover S |= f .

As we shall see next, under refinement the interval monotonically tightens,
but not necessarily to a singleton.

Remark. The idea to capture the safety and the progress properties of executions
by pairs of guards goes back to Fiadeiro’s and Lopez’ work on the CommUnity
system [9]. Like especs, CommUnity belongs to the broad family of categorical
specification systems [3, 5], where the property preservation under refinements is
enforced as the structure preservation, imposed on the morphisms. However, the
differences between the tasks supported by CommUnity and the tasks set out
in this paper lead to different treatments of guard intervals. In particular, while
the superposition morphisms of CommUnity only allow strengthening of both
safety and liveness guards [9, Def./Prop. 4.1], and their refinement morphisms
add a further constraint [9, Def./Prop. 5.1], leading to the equivalence of each
abstract liveness guard with the disjunction of its concretizations, a simpler
preservation requirement will turn out to be more appropriate in our framework.
This requirement is the subject of the next section.

Refinement with guard intervals

Let us consider a refinement of guard intervals as depicted in Fig. 4 below (where,
as earlier, ϕ denotes the specification morphism and ψ the opposite morphism on
the diagrams). When will it preserve both liveness and the safety? The answer
is a direct consequence of equations (5) and (6) in Section 1.3:

– The forcing guard f has to be weakened ;
– The permitting guard p has to be strengthened.

Spec
M
M

N
N

Spec′
M′

M ′
N ′

N ′

ϕ

〈f, p〉 � t

〈f ′, p′〉 � t′

Ψ Ψ
Ψ

Fig. 4. Refinement of guard intervals

Gathering these implications, together with the constraint of Def. 4, in the
form

M′ |= ϕ(f)⇒ f ′ ∧ f ′ ⇒ p′ ∧ p′ ⇒ ϕ(p) (12)

10

we see that the refinement actually tightens the guard interval, just like it does
in real number computation, so that above implications can be construed as the
interval inclusion 〈f ′, p′〉 ⊆ 〈ϕ(f), ϕ(p)〉. For especs, this just captures the fact
that the behaviors in which the refined transition is taken is strictly included,
modulo the interpretations, among the behaviors where the abstract transition
is taken. The effect of a nontrivial liveness guard (i.e. not always false) is to force
the inclusion of the transition in all refinements.

If liveness properties are proved relative to the liveness guards (forced tran-
sitions) then since the liveness guards are only weakened under refinement, they
will be preserved under any refinement. Similarly, if safety properties are proved
relative to the safety guards (enabled transitions) then since the safety guards
are only strengthened under refinement, they will be preserved under any refine-
ment.

This extension of the espec formalism by the pairs of guards 〈f, p〉 is easily
seen to be yet another instance of the abstract framework of [12]. The procedure
of adjoining guards to the category Spec of specification, described in Section 3
of that paper, only needs to be modified by taking

G(K,M) = {〈f, p〉 ∈ L2
K | K ∧ f ⇒M ⇒ K ∧ p} (13)

Defining the espec morphisms as above then allows capturing the suitable combi-
nations of safety and liveness properties, expressible by the guard intervals. The
language of especs with guard intervals is more expressive than the ordinary
guarded language, as it can express certain combinations of temporal modali-
ties. The exact characterization of its expressiveness appears to be nontrivial.

The well-known topological analysis of liveness and safety properties [2] tells
that every first order trace property can be expressed as an intersection of a
safety and a liveness property, i.e. in the form � q ∧ ♦ r.

Based on Lemma 1 we know that by representing a first order property in
the form � q ∧ ♦ r, and setting up the guard intervals in an abstract espec to
realize this property, we can be sure that the espec morphisms preserving the
guard intervals will preserve this property.

Proposition 2 An espec morphism with guard intervals preserves all first order
properties.

4 “Normally” Modality

When they explain the functioning of a system (be it existing or planned), engi-
neers usually begin in the style: “Disregarding pathological borderline cases, the
normal behavior is . . . ”. In practice, there is a healthy distinction between the
essential purpose of the system and all the nitty-gritty details of possible com-
plications and unwanted effects. As soon as one tries to transfer this principle to
the rigorous world of mathematical specifications, severe problems arise. Specify-
ing the essential features without explicitly precluding the undesired exceptional

11

situations often leads to inconsistencies. On the other hand, enumerating the un-
desired situations, and their interactions, is known to lead to “formal noise” that
exceeds the specification proper by an order of magnitude.

We attempt to mitigate this situation by introducing a special operator nor-
mally, denoted by �. We could define this operator as some kind of modality,
but our framework allows us to introduce it as a simple abbreviation.

Definition 5 (Normally) The normally operator � is an abbreviation for an
uninterpreted guarding predicate n:

� property abbreviates nrml ⇒ property
� guard � transition abbreviates nrml ∧ guard � transition

Note that there is a fresh predicate symbol nrml for each occurrence of the op-
erator �.

As a shorthand notation we may qualify a whole specification or a whole mode
or transition with the normally operator. This means that every single axiom and
transition is implicitly preceded by the operator �.

In the later course of the development of the model this variable nrml can be
made explicit and then be more and more concretely interpreted by giving axioms
for it. This way, one can successively add exception handling to an originally
“purely optimistic” model.

Together with our concept of refinement, this operator stratifies specifications
considerably. The following program illustrates our use of the normally operator.

espec Player is
. . .

mode Playing is

� #(channels) = 4
. . .

end-espec Player

This specification says that an active CD player “normally” has four channels
available for streaming (thus enabling stereo). However, there may be situations
in which the MOST bus does not have enough free channels. Then we have
to take appropriate measures in order to build a workaround (e.g. changing to
mono). But we do not want to clutter our specification of the essential behavior
with that kind of exception handling in the early stages of our development.
These kinds of complications need to be worked into the specification at some
later stage – and it needs to be done in a systematic way; this is achieved in our
approach by employing suitable refinement morphisms.

4.1 Refinement of “Normally”

Many of the occurrences of the normally operator � can be refined by the stan-
dard mechanisms developed so far. Since the operator usually corresponds to the
addition of uninterpreted predicate symbols, we simply need to define axioms

12

that interpret these symbols in order to make the specification more concrete.
This is a classical refinement morphism.

However, there is one additional activity that we need to add for purely
pragmatic reasons, even though it partly conflicts with our notion of refinement
morphisms: If in a specification Syst a whole transition is qualified as “normally”,
i.e. �(M g�t N), then the designer often wants to express the fact that there
may be further transitions out ofM, which are not yet relevant at this stage of
the development.

A later refinement Syst′ may then add another transition M g′�t′ K out
of M. The problem is that this need not correspond to any transition of the
original specification Syst. Hence, the mapping ϕ0 (see Section 1.3) is not a
proper diagram morphism.

There are a number of ways out of this dilemma. In the next section we show
a special instance of this paradigm in order to demonstrate how the principal
mechanism works.

4.2 Especs of exceptions

The normally operator � allows a relatively fine-grained qualification of those
aspects that are in the core of a system (as opposed to borderline cases such as
errors or rare events). However, it does not really help to solve another unpleasant
feature of real systems: exceptions.

Since exceptions can happen anywhere and anytime, the whole specification
would have to be qualified by �, meaning that every single axiom, mode and
transition is qualified as “normally”. This would make the refinement effort
to successively eliminate all occurrences of � unbearable. Hence we need other
means to systematically cope with this kind of global pathology.

Raising an exception interrupts some existing computation flow, and there-
fore may not preserve liveness properties. Catching an exception introduces some
new computation flows, and therefore may not preserve safety properties. That
is why imposing policies, to distinguish normal behaviors and to handle excep-
tional behaviors, is a challenge for systematic system design.

More precisely, we are given a basic system Syst� satisfying a behavior B un-
der “normal” circumstances, i.e. as long as there are no exceptions: Syst� |= B.
From this system we want to derive a system SystE satisfying B whenever the
norm ¬E (no exceptions) is satisfied, otherwise satisfying the handling require-
ment H . Formally, we require:

SystE |= (¬E ⇒ B) ∧ (E ⇒ H) (14)

This is realized by building system SystE with

SystE |= (¬E ∧B) W (E ∧H) (15)

The system SystE is systematically obtained from Syst� as follows:

– the modes of SystE are:

13

• the modes of Syst�,
• an adjoined handling mode H,

– the transitions of SystE are:
• for each transitionM 〈f,p〉�t N in Syst� a transitionM 〈f,¬E∧p〉�t N

in SystE , provided f ⇒ ¬E, and
• for each modeM of Syst� a new transitionM E��t H in SystE , where
t̂ initializes the variables of H .

Proposition 3 SystE satisfies (15) and hence (14).

As can be seen here easily, this is a global treatment of a global normally
operator: Such an operator implicitly qualifies all modes and transitions by �.
And the above construction simply refines all the different predicate symbols (to
which these � operators correspond) by one single predicate ¬E.

The question is: What kind of espec morphism supports refinements in the
form Syst� �� SystE? The problem is that the mode H, adjoined in SystE
does not arise from any mode present in Syst�.

One possible answer is to first extend Syst� by an unreachable mode H, with
a transition from each modeM, but guarded by ⊥. Such an unreachable abstrac-
tion Syst� �� Syst⊥ leads to an espec Syst⊥ semantically equivalent to Syst�;
that is, both systems have the same traces. So Syst� and Syst⊥ satisfy the same
properties.

On the other hand, Syst⊥ can be refined to SystE . This refinement, of course,
does not preserve safety, since H is not unreachable in SystE . However, it is not
hard to prove that

Proposition 4 The span Syst� �� Syst⊥ �� SystE, viewed as a general-
ized morphism, preserves liveness, and moreover it preserves all properties B of
Syst�, relativized to ¬E, in the sense of (15).

5 Parameterized Especs: Modeling the Environment

In system design, the need arises to specify the properties and behavior of a com-
ponent’s environment, including required behaviors, invariant properties, and
required services. The correctness of the component’s behavior follows from the
assumption that the environment behaves as specified, together with the internal
structure and behavior of the component. This is sometimes referred to as the
“rely-guarantee” paradigm. Parameterized especs neatly satisfy this need.

A parameter to an espec is an espec that models the environment – what
behavior and properties the component expects of the environment, and what
services it requires. The binding of a parameter to the environment is given
by an espec morphism π – the environment is expected to be a refinement of
the parameter. The environment will typically have much more structure and

14

behavior than is specified by the parameter, but it must have at least as much
as is required for the correct operation of the component.

CD-Player

Environment

Disabled Enabled

enable

disable

Device

Silent Playing

start

stop

π

Most-System

Silent

CD
Playing

Radio
Playing

stopCD startRadio

Navigation
Playing

Phone
Playing

Radio

Environment

Disabled Enabled

enable

disable

Device

Silent Playing

start

stop

π

Navigation

Environment

Disabled Enabled

enable

disable

Device

Silent Playing

start

stop

π

Phone

Environment

Disabled Enabled

enable

disable

Device

Silent Playing

start

stop

π

ϕ ϕ

ϕ ϕ

Fig. 5. Modularization through parameter morphisms

In our running example of the MOST bus this will typically lead to situations
as depicted in Fig. 5. Each device has a body specification for the device proper
and a parameter specification for its interface to the context; both are linked
through a parameter morphism π. The interfaces are then linked to the overall
system, i.e. the MOST bus, through refinement morphisms ϕ. This makes it
relatively easy to add any number of components to some MOST system with-
out running into an unmanageable combinatorial explosion of the size of the
specifications and, above all, of the number of interconnections.

This raises the question of the refinement of parameterized specifications.
Fig. 6 shows an example of such a refinement.

In the original abstract model an audio device is simply assumed to switch
between the two modes Silent and Playing . Accordingly the environment is
expected to consider the device as Disabled or Enabled (with the appropriate
matchings).

However, in the MOST bus the enabling of a device is performed by a full-
fledged connection protocol : In order to become playing, the device needs a num-
ber of channels to be allocated by the MOST bus. After having received them,
the device still cannot play, since the channels also need to be allocated to the
amplifiers. Therefore the device has to go into an intermediate mode Ready ,
while the environment is in the mode Connecting . (It is only by chance that the
number of modes and transitions in the parameter and the body coincide in this
example. In general they will be different.)

15

Audio-Device

Environment

Disabled Enabled

enable

disable

Device

Silent Playing

start

stop

π

Audio-Device-connecting

Environment

Disabled Connecting Enabled

allocate

stop
run

stop

Device

Silent Ready Playing

allocate

stop
run

stop

π
ϕ

Fig. 6. Refinement of parameterized specifications

This refinement is realized by the morphism that is sketched in Fig. 6. How-
ever, this diagram only gives a rough idea of the construction, since it does not
express the various compatibility constraints between the two parameter mor-
phisms and the refinement morphism ϕ. Fortunately most of them are generated
automatically by the category-theoretic principles underlying the construction.

Consider the situation of Fig. 5 and the little program in Section 4. Let us
assume that the parameter specification establishes �#(channels) = 4 in the
mode Enabled .

Now consider the mode CD-Playing of the MOST system in Fig. 5 and
suppose that it only contains the assertion #(channels) ≥ 2 . What does this
mean in our overall design?

Due to our various morphisms we need to establish the property

CD-Playing |= � #(channels) = 4 (16)

This leaves us with the problem of establishing the property (with an unin-
terpreted symbol nrml)

#(channels) ≥ 2 |= nrml ⇒ #(channels) = 4 (17)

So the further refinements must add interpretations to nrml that allow us
to complete this required proof. In practice this means that upon connection
establishment the CD player needs to obtain the required number of channels
from the MOST system, which is stored in a local variable chNr. Then nrml
simply is refined to chNr = 4. The span construction of Proposition 4 adds a
new transition to a handler mode for the case when chNr < 4.

6 Conclusion

The methodology that we have presented in this paper has a number of benefits.
It allows the systematic incremental development of models as opposed to the
predominant current practice of creating monolithic models in a more or less
informally crafted process. Moreover, the resulting models are formally specified,

16

which allows not only automatic code generation (at least of prototypes), but also
supports all kinds of analyses, ranging from logical consistency or completeness
checks to plain testing.

With respect to the underlying formalism, a lot of work still needs to be
done. For example, we currently study different approaches to the role of the
“normally” operator and its refinement. Also, the role of guard refinement in
the context of automotive applications needs to be assessed in greater detail, in
particular with respect to liveness vs. safety preservation. Moreover, the role of
(dynamic) addition and deletion of components needs to be further investigated.
Yet another challenge is to provide a more convenient notation that will be more
readily accepted by engineers.

References

1. The MOST cooperation. http://www.mostcooperation.com/home/index.html.
2. B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,

21:181–185, 1985.
3. J. A. Goguen. Categorical foundations for general systems theory. In F. Pichler and

R. Trappl, editors, Advances in Cybernetics and Systems Research, pages 121–130.
Transcripta Books, 1973.

4. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for computer
science. Technical Report CSLI-85-30, Stanford University, 1985.

5. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for computer
science. Journal of the ACM, 39(1):95–146, 1992.

6. Huttel and Larsen. The use of static constructs in a modal process logic. In LFCS:
The 1st International Symposium on Logical Foundations of Computer Science,
1989.

7. J.Fiadeiro, A.Lopes, and M.Wermelinger. A mathematical semantics for architec-
tural connectors. In FASE-03, LNCS 2793, pages 190–234, 2003.

8. Kestrel Institute. Specware System and documentation, 2003.
http://www.specware.org/.

9. A. Lopes and J. L. Fiadeiro. Using explicit state to describe architechtures. In
J.-P. Finance, editor, FASE, volume 1577 of Lecture Notes in Computer Science,
pages 144–160. Springer, 1999.

10. D. Pavlovic, P. Pepper, and D. R. Smith. Colimits for concurrent collectors. In
N. Dershowitz, editor, Verification: Theory and Practice: Festschrift for Zohar
Manna, pages 568–597. LNCS 2772, 2003.

11. D. Pavlovic and D. R. Smith. Composition and refinement of behavioral specifica-
tions. In Proceedings of Sixteenth International Conference on Automated Software
Engineering, pages 157–165. IEEE Computer Society Press, 2001.

12. D. Pavlovic and D. R. Smith. Guarded transitions in evolving specifications. In
H. Kirchner and C. Ringeissen, editors, Proceedings of AMAST 2002, volume 2422
of Lecture Notes in Computer Science, pages 411–425. Springer Verlag, 2002.

