
Constructions and Predicates

Du~ko Pavlovi6

Zevenwouden 223, Utrecht, The Netherlands

Abstrac t

In this paper, the theory of constructions is reinterpreted as a type
theory of "sets" and "predicates". Following some set-theoretical intu-
itions, it is modified at two points: (1) a simple new operation is
added - to represent a constructive version of the comprehension
principle; (2) a restriction on contexts is imposed - "sets" must not
depend on "proofs" of "predicates". The resulting theory is called
theory of predicates. Sufficiently constructive arguments from naive
set theory can be directly written down in it. On the other hand,
modification (2) is relevant from a computational point of view, since
it corresponds to a necessary condition of the modular approach to
programming.

Our main result tells that, despite (2), the theory of predicates is as
powerful as the theory of constructions: the constructions obstructed
by (2) can be recovered in another form using (1). In fact, the theory
of constructions is equivalent with a special case of the theory of
predicates.

1. I n t r o d u c t i o n

The foundational role o f type theory in computer science is comparable with the foundational

role of set theory in mathematics. But the "set-theoretical" type theory o f Russell and Church

seems to have been less influential than the "logical" conception offormulce-as-types, due to

Curry and Howard (and traceable back to the Brouwer-Heyt ing-Kolmogorov interpretation o f

proofs-as-constructions). On the other hand, the experience of topos theory shows that the

crucial set-theoretical notions can be given an elegant type-theoretical presentation (cf. Lambek-

Scott 1986). So it seems worth-while to better explore the conceptual area in the intersection o f

type theory and set theory.

174

This paper reports on an effort to understand the theory of constructions (Coquand-Huet 1986,

1988, Hyland-Pitts 1989, Coquand 1990) as a strongly constructive theory of sets and

propositions. With a similar idea, Ehrhard (1989) has argued that the categorical counterpart of

the theory of constructions generalizes the notion of topos. Rather than semantically, we shall

here approach the theory of constructions from another type theory, the theory of predicates.

Both these theories recognize two sorts of types, which can be understood as sets and

propositions. So there are two universes. The universe of propositions is a type in the universe

of sets; propositions appear as terms of this type. Terms in the universe of sets represent

elements; terms in the universe of propositions are proofs. Viewed in this way, a family of

propositions a(X) indexed by the elements of a set K is of course a predicate on K.

The theory of predicates starts from the idea that every predicate a(X) should be comprehended
in the universe of sets by something like {XeK/c~(X)}. An element of {XeK/ct(X)} would

be a pair (k,a), where a is a proof of a(k). There may be many different constructive proofs of

or(k) (i.e. many terms of this type) and the set {XeK/ct(X)}, viewed constructively, may not

be a subset of K.

Furthermore, indexing of a family of sets by proofs of a proposition will be forbidden in the

theory of predicates. Philosophical justifications for this restriction (in the style: "all the

elements must be created before proofs of propositions about them") become superfluous in the

light of the main result of this paper, which tells that it really makes no difference - provided

that predicates are comprehended among sets. We shall prove that the theory of predicates has

slightly greater expressive power than the theory of constructions (although the latter theory

imposes no special restrictions on indexing). In fact, the theory of constructions is equivalent

(modulo a translation) to the strict theory of predicates, the one which satisfies a version of the

c0-rule, well known from the untyped Z-calculus. Another characteristic of the strict theory of

predicates is that every predicate o:(X) in it can be recovered from (or even identified with) the

set {XeK/ix(X)}. In my thesis (1990) it was described how the theory of predicates

corresponds to some small categories with small sums and products, while the theory of

constructions and the strict theory of predicates correspond to those such categories which are

(fully) generated by the terminal object.

And while conceptually nothing is lost by dumping the sets which depend on proofs, it seems

that a lot can be gained. Some gains are technical: the imposed restriction reduces contexts to

two layers (first sets, and then propositions), and many constructions - e.g. term models -

become essentially simpler. But recent papers by Moggi (1990) and by Harper-Mitchell-Moggi

175

(1990) display this restriction as a sine qua non of the modular programming. Roughly

speaking, Moggi understands as programs what I here call propositions, and my sets are for

him data types. Clearly, a modular approach to programming can be effective only if the type-

checking can be performed at compile time, before running actual programs. In other words,

no type must depend on output of programs. This is called phase dist inction between the

compile-time and the run-time. Or between sets and propositions. It is amusing to think that

this analogy of computational and foundational concepts is not accidental. 1

2. Type theor ies

Keywords. We shall consider three kinds of expressions:

- terms, here denoted by metavariables p, q, r, s, t,

- types, denoted by P, Q, R, S , and

- universes, for which we use the letter "(2.

The common name for terms and types is construct ions; while range denotes a type or a

universe. And now these expressions form two kinds of judgements (or statements):

- equations, or conversion judgements T=T' between constructions T,T', and

- formation judgements T:U, meaning "the construction T has the range U".

The metavariable J will denote a judgement. The range of a construction can sometimes be

indicated by a superscript: T U.

The variables are special atomic terms. We use the letters X, Y, Z for them. If the terms are

understood as programs, the variables are the input operations. Each term is represented by an

expression p(Xo,..3Cn), in which the variables indicate the input gates. To supply input means

to substitute a term q(Yo,...Ym) for a variable Xi:

p (X o ,Xi ,Xn)[q /X i l := p (X o ,X i - l ,q (Yo Ym) ,Xn).

Of course, q must have the same type as Xi. The type of a term-as-program is the type of its

output data. Note that a data type may also vary, i.e. it may need some input before it is

evaluated. A term must vary with its type. The universes will always remain constant - no

variables can occur in them.

The actual objects of study in type theory are sequents

Xo:P 0 X n : e n ~ J (n~ o3).

IAdded in proof: Other such analogies can be found in Meseguer 1989.

176

An array Xo:Po ,Xn:P n is called context and abbreviated by letters F or zi. It can be

understood as the' list of declarations of the data used for constructions in J. All the variables

occurring in these constructions must, of course, be declared. But a variable occurring only in

the context of a construction, and not in the expression which actually names this construction,

can not always be safely omitted. Intuitively, a program with some superfluous data among the

declarations may change when this data is removed: if the superfluous data does not exist - if

its type is empty- , a program containing it may never become executable. 2

Sequents are derived using some rules, generally in the form

F, zio=,Yo (...) F, zln~Jn

F ~ J

The sequents above the line are premises, the one below is the conclusion. The variables from

zt0,...zi n are said to be bound in the conclusion. Conventionally, we often omit the context F

common to all the sequents in a rule. The rules by which the theories studied here are built up

will be listed in Appendix I.

Derivations are trees built iteratively using the conclusions of some (instances of) rules as

premises for other rules. This proces starts from axioms, which can be regarded as rules with

empty set of premises.

A construction or a context is said to be well-formed (or valid, or legal) i f it occurs in a

derivable sequent. The name of a universe and the empty context are assumed to be well-

formed.

A construction is closed when its context is not bigger than the context of its range. Thus, a

closed type must have empty context (since the range of a type is a universe). A type is

inhabited when it possesses a closed term.

If we allow not only the empty context, but also the "empty judgement", and assume the empty

sequent ~ (empty on both sides!) as an axiom, then we can show that a context F is well-

formed iff the sequent / "~ is derivable. (We can extend the notion of axiom to the rules with

at most one premis, checking whether a context and a range am well-formed.)

In fact, the empty context and the empty judgement are a type - j u s t as zero is a number. (This

is essential for some proofs below.) In every universe 22 we shall assume a unit type 1: 22,

2When is this the case and when not is a rather subtle matter: its categorical formulation leads
into theory of descent. A forthcoming paper will explore this connection.

177

inhabited by a unique term ¢:1. The empty context and the empty judgement can now be

written ¢:1 orX:l, which boils down to the same thing, since X1=¢.

Common to all type theories are also the structur~al rules, which govern manipulation with

variables. The rules Replacement and Typing tell that equal constructions can replace each

other: all the operations must preserve the convertibility relation (=). The rule Assumption tells

that there is always a fresh variable of each well-formed type. Let me stress that this does not
imply that each type must be inhabited (i.e. that data of each type must exist)!

To get an algebra from an algebraic theory, one can add some generators and equations (to the

constants and equations included in the theory), and derive the well-formed expressions, which

are then partitioned in the equivalence classes induced by equations. A type theory can similarly

be extended by generators and additional equations. Generators must be given with well-

formed contexts and ranges; equations may be imposed only on constructions with the same

range and context. We call system the class of derivable formation sequents of an extended

type theory; letters Jvl., ~ denote systems. (For convenience, we shall assume that a system

also includes the names of universes.) Building a system is a dynamical process, since an

atomic construction - a generator - can have a complex context and range, and can be thrown

in only when they have been derived.

The convertibility relation (=) is extended from constructions to sequents in an obvous way -

component-wise - modulo a renaming of variables (c~-rule). Let us spell this out. By

definition,

(Xo:eo Xm:em T:U) = (X'o:P'o :U')
mean~ that

- m=n, and

- the following sequents are derivable

Yo:P"o Yj:P"j ~ Pj+I[~ / ~ I=P)+E i¢ /~ 7, for allj<n;

Yo:e"o Yn:e"n ~ U[iC / ~]=UTi¢ / ~ 7;

Yo:P"o Yn:P"n ~ 7"[~/~1=T7i~/~7;

where P'~:=Pj[~ / ~], while ~ :=(Yo Yn) are fresh variables.

Partitioning a system of a type theory by the convertibility relation gives a term model for this

theory. In the usual abuse of language, we often write T for whole sequent F~T:U, and even

178

for its equivalence class; the context and range are meant to be kept implicite, and can be

recovered by CX(T) = F and R G(T) = U. 3

The algebraic aspect of type theory is the study of the convertibility (=) G JExdt'L. Its proof-

theoretical aspect concerns the relation of derivability (l-9 _~JCL *xdl'L, transitive closure of all

the instances of the given formation rules (together with the axioms and generators taken as

rules), where ,/¢t, ~:= U dCL i.
iE to

Theories of constructions and of predicates, The theory of constructions is a (Martin-

1.6f-style) type theory of sums and products - in two universes:

S - its types are called sets, its terms elements (or functions);

P - its types are propositions, terms are proofs.

Each of these universes is closed under all sums and products. Clearly, there are four possible

kinds of indexing: S ~ , ~ , P ~ P , S ~ P , P ~ S - and four kinds of sums and products,

two for each universe. The sums and products of propositions indexed over sets (S ~ P) are

quantifiers. They will be written 3 and V.

The axiom P :3 is assumed: "The universe of propositions is a set". It follows that every

proposition is at the same time a type in P and a term in S . So there are three levels of

constructions:

a ,b , c a, fl,~,.
proofs x ,y , z : propositions ~, r / , (" sets P K := K ~ t 9.

Of course, sets which are not in the form P K may also be introduced. We denote by A,B,K

sets in general, and their elements byf , g,k; the general element-variables remain X,Y,Z. We

shall reserve ¢:1 for the singleton, unit of S; the truth, unit of/9, will be denoted by *,: 7-.

The intended meaning of the operation of extent t is to assign to each proposition the set of its

proofs. A constructive version of the comprehension principle should be captured in this way.

The selection operator t, which Alonzo Church introduced in his simple theory o f types

(1940), is the classical ancestor of our t - though based on a quite different idea. On the other

hand, one version of the calculus of constructions (Coquand 1990) contained an operation T,

which was meant to replace a proposition by the set of its proofs. But a proposition in the

calculus (or theory) of constructions is, in a sense, nothing but the set of its proofs.

Conceptually, the operation T does not do much; it is actually a syntactical device, introduced

3This is a notational convention. In general, a construction need not determine a unique context
and range.

179

to secure the uniqueness of derivations. If all the t-rules (T had only the introduction rule)

would be added in the theory of constructions, the extent operation would just switch a

proposition from universe to universe.

This operation is more interesting when combined with the phase distinction, the requirement

that sets and elements never depend on proofs. (I.e., the indexing 2 : ' ~ S is forbidden.) The

(implicite) context in all the extent rules - listed in Appendix I - must now consist of sets only:

otherwise, a proposition contained in the context of a proposition tz would be passed in the

context of the set to~. Therefore, only a predicate - a proposition indexed only by sets - can

have an extent. The elements of the extent ttx now correspond to the logically closed proofs of

tz, i.e. to those proofs which do not depend on other proofs (and have only some element-

variables in their contexts). - This combination of the extent operation and the phase distinction

characterizes the theory of predicates.

The fragments obtained by removing the ,S-operations from type theories will be called calculi

here. We shall abbreviate by COC the calculus of constructions, and by COP the calculus of

predicates. TOC and TOP will be the theory of constructions and the theory of predicates.

3. What can be expressed by predicates?

Now we shall list some facts which might offer an impression of the power of predicates, and

of questions arising from them. The proofs are omitted; they are beyond the scope and the

intention of this section. (Some of them can be found in my thesis.)

The notations are explained in Appendix I (or in section 2). "PoP means that "ix is inhabited".

31. For every pair of functions f , g:A -~B, and elements h,h':A, all in the same context, the

following statements are true:

I = VX:A..fX - g X

t= 3Z: {X:A/ fX ~- gX} .h - IroZ

I ~ VXX':A.fX.=-fX'~X - X '

I ~ VY:B3X:A.gX - Y

iff f=-g ;

iff fh=gh
iff ./h=fh' implies h=h'

iff g is a quotient function, i.e.

for every k:A ~ K, such that /= VXX':A.gX .~ gX' ~ kX - kX' there is

unique ~:B -~K such that k=7~og.

32. Writing A in place of x , define

3.tX:K.~(X) := :TX:K.XX) A VXY:K.(~(X)A~(Y)) ~ X ---Y.

180

Now consider the principle of function coprehension:
I = VX:A3!Y:B.tz(X,Y) iff i=a(X,Y) ~ - , fX-Y for some f.

In other words, the functions may be identified with the total and single-valued relations, as in

set theory. The if-direction of the function comprehension is true in TOP: the graph/X-Y of a

function f is provably total and single-valued. The th~n-direction, however, requires an

operation bY which would extract singletons, in the sense that

whenever 1=5!X:K.~(X), then there is tX.7(X) : g with I=~(tX.y(X)).

In Church's simple theory of types (1940), the operation tX was derivable using the selector I.

(The logical systems of Frege, of Russell-Whitehead, of Hilbert-Bernays also contained

operations like by.) Constructively, however, the function comprehension is independent from

the set comprehension. It is not derivable in the theory of predicates 't , but it can be neatly

introduced. For instance- by a slight intervention on the phase distinction:

i I

[Predicate 7can occur in the context o f a set only i f I=~(X)AT(X')~X -X'[

Given P=S=K, Q=7 and closed proofs b:~(:K.Tand C:~(X)AT(X')~X-X, the term

tX.~(X) := ~ob

can now be formed by Y.E and proved to be independent of b and c. (We assume that the

condition (S_~Q) is omitted from ~E in TOP. To introduce by in TOC, it is sufficient to

strengthen ~E by extending this condition to (S_<Q or hQ(X)AQ(X')-~X-X3.)

33. Define
19 A ~ 2XA y PA.yX : A ~ ~ PA, and

P f ~ ZYPBXA. Y(fX) : PB--* PA, for an arbitrary function f.'A--*B.

In ordinary set theory, for every set A there is a bijection

A ~- {XE ~ P A / V p p A X .~ P(PDA)X }.

In TOP, we have a term u from left to right and- if the function comprehension is supported-

a term n from right to left. They satisfy nou=idA, but not uon=id{...}. An intuitive explanation

can be that the set on the right side contains not just the principalfilters on PA, but also the

proofs that they are principal filters, and there can be many of those for each of them.

Similar phenomena are met in encoding other set-theoretical constructions in TOP. E.g., the

disjoint union can be defined by:

4To see this, consider a Heyting algebra H as a model for the theory of predicates. The sets are

interpreted as the members of H. For a,beH, the relation a:~b represents a function from a to
b. The type P of propositions will be the unit I of / / . (In terms of my thesis, we are looking at
the category of predicates id:H---)H.) - The function comprehension fails in this model.

181

Ao+A1 := {X: P(PAoxPA1)[vp~pao×s,al)X- P(PVao× PVa~)X }
Of course, there are inclusions xi:Ai ~Ao+A1 (ie2) and the operation [_,_], which assigns to

each pair of terms fi:Ai.-gB (ie2) a term [fO,fl] :Ao+A1 ~ B , such that [fO,fllotq =fi.
However, [tO, t¢11 = id need not be true.

Yet another example: If, except the powersets, no other products of sets were given in our

theory, we could define them using the extents of some equations, just as above, adapting the

constructions from topos theory. However, the k-abstraction obtained in this way would not

satisfy the 1-[ri-mle. 5

Morale: The constructions with constructive extents are not extensional, because these extents

are blown up by some constructive proofs.

4. Comparing theories: the conceptual part

What are we going to do? The starting point of our reduction of TOC is a simple ob-

servation, formulated in lemmas 21, Appendix II:

- the universe of propositions is embedded in the universe of sets by the operation

_×1:29---) S (and _xT: S ---) P is its reflection);

- this embedding preserves (up to isomorphism) all operations except the existential

quantifier.

In particular, every sum or product over a is isomorphic with a sum resp. product over ~xxl.

This means that the theory of constructions is sufficiently redundant that propositions occurring

in contexts can be replaced by sets. If we restrict TOC by allowing only sets to occur in the

contexts - call such a theory T O C s - and translate TOC-constructions into T O C s -

constructions:

(...x:o~...~T(x)) t----) (...X:o:xi...~T(lroX))

- nothing will be lost, in the sense that an isomorphic copy of each TOC-type will still be

generated in TOC3.

5The exponent A ~ B could be obtained as a subset of P(AxPB). The sum A+B is a subset of

P(PAxPB). Note the resemblance with classical logic, where (A ~ B) ~ -~(AA'~B) and

(A v'B) ~ -7(~AA...tB).

182

But now, TOC3 respects the phase distinction, and can be translated in TOP. So TOC can be

translated in TOP. On the other hand, TOP can surely be translated in TOC, since the extent

operation is definable there:

t o~ .~- oc x l
~a ~ (a,O)

ck .= ~rok.

By this translation, however, many types which were not isomorphic in TOP become

isomorphic in TOC; the former theory has "more" types. (Out of seven isomorphisms "through

the border of the universes", which can be extracted from lemma 212 for TOC, only two exist

in TOP" those from lemmas 222 and 223.) To relate the theories precisely, we added in TOP
the terms x:o:~t$*x: tO:xT-. They behave just like "(~x,*)" would, if only t~x could be

formed. These terms force isomorphism of each predicate with (the reflection of) its extent

(lemma 231). Consequently, the extent operation t:P"--) S becomes an embedding, with the

same preservation properties as _xJ:P---)S in TOC (lemma 232).

In the strict theory of predicates (STOP) - the one with t$*x - the sums and products over

propositions can be reduced to the sums and products over sets, just like in TOC. So we have a

subtheory STOPs _~STOP, just like TOC3 _~TOC. Moreover, STOPs and TOC3 are

isomorphic. The conclusion that STOP and TOC are equivalent can now be made following the

topological idea that

two spaces are homotopy equivalent iff they have isomorphic deformation retracts.

The next proposition shows the strict extents from another angle.

Proposition. (In STOP.) Let T(x a) and T'(x a) be arbitrary propositions, or proofs of the

same proposition. The following rule is true:

to if T(a)=T'(a) for all logically closed proofs a:o~

then T(x)=T'(x).

In the presence of~i* and 8*rl, the o-rule implies 8"13.

Proof. If T(a)=T'(a) for all logically closed a:a, then it holds for z.X:ct, i.e.

X:t tx~ T(v((X, ,) , (X , ,) . ~)) = T(~X) = T ' (a) = T'(v((X, *),(X,~).~X)).

According to lemma I4 (still Appendix II0, this implies

Using 8"13, we get

x:a ~ r~x)= r(v~a,,x, ~ x , ,) . a)) = r ' (v (a*x , C X , ,) . a))= T'W.

183

To derive 8"~ from o), note that for

c (x):- v(5~x, (x ,~) .b [~ /z l))

and for any logically closed a:a holds

c(a)=c<~(&))= v(6*z(6a), (X,,).btzX/z]) = v(<~a,,), (X,,) .btcX/z])=

= b(~(&)) = b(a)..

Remarks. The last proposition is the type-theoretical version of the fact that the category/9 of

propositions is generated by the terminal object in the models of TOC and STOP. This means

that the operations

#(x) P--> t (# (tx))

b(x) ~ 8(a(tx))

are injective. In fact, a TOP-system supports the strict extents iff the second operation induces

a bijection between the sets of closed terms of type tx~ ~x' and of toc~ tc~'. (This can be

deduced from II1.4.3 and IV.2.2 in Pavlovi6 1990).

The c0-rule owes its name to the fact that it is an infinitary rule (with infinitely many premises).

In our setting, however, it can be equivalently expressed with just one premis:

03
X: ta ~ T(zX) = T'(¢X)

x:cx ~ T(x) = T'(x)

5. Comparing theories: the technical part

Instanciation. Consider a construction T(X) and terms p and q which can be substituted for

X. If for every judgement JT(X), involving T(X) and possibly some more occurrences of X,

JT(P) implies JT(q),
then we say that T(q) is an insthnce of T(p).

Usually, T(p) is T(X), and its instances are obtained by substitution. The example of the o)-rule

shows, however, that this is not the only way to instanciate. (In the m-rule, T(q) is T(x)!) In

the sequel, we shall actually use instanciation as the common name for the substitution and the

ca-rule.

Equivalences. Let jVt. and ~/' be two systems. A translation of systems is a mapping

F:.34. ---> ,IV' which preserves the derivability (~-) and the convertibility (=). Moreover, it should

be coherent, in the sense that

184

r(r r:u) : (r'=T':U') I
F(F=U:V) = (1 " = U":V") ~ imply U' = U".

Let M and N be two type theories. A translation F'M --->N assigns to every M-system .h£ an

N-system FjVL and a translation of systems F~:JCc ---)F.#C.

A subsystem ~ _~ a% is a retract of ~ if there is a translation F:J¢~ ---) ~ , which restricts to

the identity on ~'; moreover, every type Q from ~ must be isomorphic with an instance of

F(Q). More precisely, there is a chain of instanciations E, which brings F(Q) in the context of

Q, and

F(Q)I.EI ~-Q.

A subtheory N_~M is a retract of M if there is a translation F:M ---)N such that every FJVL is a

retract of .At by F ~ .

Theories M and N are equivalent if there are translations F:M---)N and G:N---->M, such that

for every M-system J~ and N-system ,N', GFJ~ is a retract of .A,I. and FG~f is a retract of ,N'.

Comments. Recall (from section 2) that a system is assumed to contain its universes, together

with all "other" derivable formation sequents. The coherence requirement for translations

applies therefore not only when U is a type, but also when it is a universe.

Usually, a subobject/": ,N' c..__> ~ is called retract of ~ when there is a map F:jV~ ---) ~ such

that Fof=id.~. The above definition requires toF =id~t too. Because of this, ,/V' can be

understood as a deformation retract of JM.; and our notion of equivalence can be understood as

the homotopy equivalence. Note that each deformation retract of a system is equivalent to that

system.

The idea is that theories should be equivalent if they have the same class of models. 6 For

instance, the theory of Boolean algebras is equivalent with that of Boolean rings. The theory of

Boolean algebras with the signature (v, ~,0) is a retract of the one using (V,A, ~, -~,0,1). The

cut elimination is a retraction of a sequent calculus.

Eliminating redundancies from a theory is like removing synonyms from a natural language. It

becomes harder to speak, but easier to understand - closer to semantics. E.g., the cut-

elimination yields unnatural proofs, but offers a crucial insight into what is provable.

~The morphisms which they induce on this class can be different.

185

As far as type theory is concerned, we want to consider as synonymous exactly those

isomorphic types that would be identified semantically. (A complete semantics for the theory of

predicates has been given in Pavlovi6 1990.)

Theorem. The theory of constructions (TOC) and the strict theory of predicates (STOP) are

equivalent.

Proof. As explained in section 4, we shall define the following translations

T(X2

TOC S ~

STOP

'~ STOP s
%

The subtheories which we consider are obtained from TOP resp. STOP by the restriction

TOCs, STOPs [....Only sets may occur in contexts. I

In TOCs, however, a provision must be made for the operation _xl: P---) S

TOCs [The context of t: S may contain propositions.]

Translation E. For an arbitrary TOC-system J~, we simultaneously define two translations,

D and E:J~ ~ J~:
D(.. .X:Q.. .~r:u) .-- (..x:LQJ...~LrJ..LuJ[dQx/xI),
e(. . .x:a. . .~T:U) .= (..x:Le_l...~fT 7..Fu 7[aQx/xl) 7,

where/-_ 7 and L--J translate expressions as follows. ¢ denotes an atom, and t3 stands for z~

or H.

F¢7 := ¢
['cJx:e.a 7 := ~X: LPJ [-Q 7
FZX.q 7 := Zx. Fq 7
Fpq7 .-- Fp7LqJ
F(p,q) 7 := (LpJ, Fq 7)
Fv(r, Cx,r).s) 7 := v(Fr 7, ~X,r)./'s 7)

7people who would prefer to change the name of a variable when translating it into a different
type should assume a bookkeeping algorithm for variables here.

186

Lp.I := s Ls_I := s
Lod := I-,~Txz LK.I := Itc7
LaJ := d'a T, m) Lk.I := I-k7

Let us define the terms dQ now. We want to substitute dQX for X:Q in order to replace X:Q in

a context by X:D(Q). So we must have dQ:D(Q).4 Q[AQ1 , where AQ is a sequence of

substitutions of dpY:D(P) for each Y:P in the context of Q. In other words, AQ brings Q in the

context of D(Q) and E(Q).

Note that E(¢) = ¢[41, for a generator F=~,C:U.

aQ : D(Q) ~QIZlQ]
da := ea°~.O ~a
dr, :=eK ~K

:= zx.(~ ~ , ~)

:='6K

eQ : E(Q)-+Q[dQ]

e¢ := id¢ta¢1

et~x:p.Q := voow

v,:, . (~ :ece) .e~o .)) - , (~ : e . o .)
vii:= 27.. eQoZo~e

v Z := v(Z, (X,Y).(epX, eQY))

;¢ := iact~
;ox:e.Q := 7~o'~o

~'/-/:='2Z. EQ oZoep

~z := v(z, (x,Y).(~ex, "~Qr))

w: (c~:D(P).E(Q))--,(t:~:E(P).E(Q)) is the isomorphism from lemma 212; ~ is its inverse.

This completes the definition of mappings D and E. Clearly, the substitution will be:

D(T[p/X1) .'= D(T)[D(p)/X1
E(T[p/XI) := E(T)[D(p)/X1.

A straightforward inductive argument shows that E and D are translations. The image of E is a

TOC$-subsystem of J~. Call this subsystem EjI£. Since all dQ are isomorphisms, there are

substitutions SQ which bring D(Q) and E(Q) back in the context of Q. (EQ puts ~pY:P in

place of Y:D(P).) From the isomorphisms eQ we get

eQ[~Q] : E(Q)[~Q] "- Q

for every type Q from .3'L Hence, EJE is a retract of JE; TOC$ is a retract of TOC.

Translation H. The approach is completely the same: For an arbitrary STOP-system ,/V', we

define two translations I,H:N---) N, using/'_ 7 and L-.J just as above: write H in place of E,

I in place of D, and iQ in place ofdQ.

187

The definition of f_ 7=-/'- 711 is the same as that of/'_ 7E above, plus:

/'~,7 := d'~7
r~a 7 : = 8Fa 7
&k7 := ~Fk7

L..JH deviates from Z--Je a bit more:

LpJ := s LsJ := s
LaJ :=tF~7 LrJ :=FK7
l aJ := 8FaT LkJ := Fk 7

A real difference with respect to the situation in TOC is that there are no terms from

propositions to sets in STOP - hence no isomorphisms between I(o0 and ix.

iQ : I(Q)~QfAQI
ia := hao~

iK :=hK

hQ : H(Q).-gQ[AQ]

h¢ := id¢[a¢l 7i¢ := id¢lzlcj

hLa := 8°ha °~ ~ta := S°Tia°Z

ht:lX:p.Q := vt2ow ~loX:p.Q := ~vo~t2

va : (t:IX:H(P).H(Q)) --, (£1x:P.Q) is defined exactly as in the E-part, but with h instead of e.

w : (cz~:I(P).H(Q)) --, (c~:H(P).H(Q)) is the isomorphism from lemma 232.

By a substitution AQ along the terms ie (for P from the context of Q), each type Q is brought in

the context of H(Q). The question is now how to get H(Q) back in the context of Q without any

inverses of ie?

Note that the variables X:I(tx) occurring in the context of H(Q) are substituted in/ 'Q 7 by

[iaX/xl. But iaX=ha(zX). We can now instanciate by the o)-rule, and replace zX by x. So we

put in the context of H(Q) the variable x:H(tx) in place ofX:l(tx) (=tH(tx)); and now we substi-

tute: ['Q 7[hax/x].

If this is done for all propositions tx occurring in the context of H(Q), a chain of instanciations

OQ is obtained, which brings the term hQ: H(Q) ~Q[AQ1 in a context "parallel" with that of Q.

The only difference between the two contexts is that instead of Y:P ~ CX(Q), the context of

hQ[OQ] contains Y:H(P).

188

The terms hQ and h'Q remained, of course, inverse under the instanciation OQ; hence

hQ[Of21:H(Q)[OQ1 =Q[zat2,0ol. To get these two terms back in the original context of Q,

substitute now ~p[OQ]Y for each Y:H(P) in their contexts. Denote this sequence of sub-

stitutions by ~Q.

It is not hard to see that Q[Z1Q, OQ, ~,QI=Q. Namely, ZlQ substituted ieY for Y:P; OQ replaced

//,Y with hpY; F,Q put ~pY in place of Y in heY; and he(TieY) = Y. Hence

hQIOQ,~Q] : H(Q)[OQ,F_,Q] -~ Q

for every type Q from 37'. HJT' is a retract of ~ ; STOPs is a retract of STOP.

Translations F and G. The maps FS: TOCs ---)STOPs and G S: STOPs - -)TOCs are

easy to guess. The latter rewrites all the expressions from a STOPs-system ~/'S, replacing

only:

la l--> ocxl,
~a t---) (a,¢),

zk t---) ~rok;
the former goes the other way around. Note that the rules for t and those for _×1 are

completely the same. So we have an isomorphism.

Given a TOC-system ,/¢~, define FJVl. to be the smallest STOP-system containing the STOPs-

system Fsat'l, S. Given a STOP-system ~ , let G~/" be the smallest TOC-system which

contains G S d~gS. Clearly, GF Jcc ~_ dE and FG d~g ~_ ,IV'.

Further define for systems dE and ,txg the translations F = Fa~t : dE ----) F . ~

G = G ~ : Ae---') G ~ as follows:

F := tHoF$oE and

G :=/'EoGsoH.
Using E &E=id, HofH=id, F soG s=id and G soF s=id, we get

GoF = tEoE and

FoG = tHoH.
FoG and GoF are thus retractions, since E and H are.

and

Remark. The danger of working modulo isomorphisms is that whole groups (of auto-

morphisms) can be swept away: reduced to an identity. This will not happen if unique

canonical isomorphisms are used. The isomorphisms in the preceding theorem are clearly

canonical, i.e. def'med uniformly for all types. A curious reader will perhaps want to check that

they are unique. (The assertions to be proved: For every canonical isomorphismfo:E(Q)~Q,

D(ff2)=idD(O) implies fQ=eO; for every canonical gQ:H(Q) ~Q, l(gQ)=idl(Q) implies gO=hQ.) -

189

For a full precision, the unicity requirement should be put in the definition of retracts. We

refrained from this for the sake of simplicity.

6. How to compare calculi?

In the calculus of constructions, all operations can be reduced to those within the universe of

sets: the exception from lemma 212 disappears. The restriction of the translation D on COC

will therefore be a retraction. (Whole D :TOC ---)TOCs is not a retraction because of the

mentioned exception: D(z2~:K.fl) ;r~-~X:K.fl.) So we can translate expression-wise here: a D-

image of a sequent is obtained by simply applying L-J at each expression in it.

In the calculus of predicates, on the other hand, a new way of making extents strict must be

invented, since the operation 6" needs .S. Two possibilities are suggested by proposition

111.4.3 in my thesis. One is to force t (c~-, f l)-- ' tcz~ tfl (by adding something like 6*);

otherwise force t x~ f l ~- VX:ztx.fl. A proof of equivalence of the strict calculus of predicates -

which contains these isomorphisms - and the calculus of constructions can be built along the

same lines as the one presented above.

190

Appendix I

Rules

Structure (all type theories)

Assumption
F~P:

1-',X:P~X:P
(X:P e~ l')

Weakening
F,A~J F~P: "U

F,X:P,A~J
(x:P ~ r,a)

Substitution
F,X:P,A~J F=~p.'P

F,A[p/XI~J[p/XI

Replacement
F,X:P ,A~T:U F=~p=q

F, Alp~X] ~Tlp/X] = T[q/X]

Typing
r=w:p r=~=Q

F:=ho : Q

Equality (all) p=q p=q q=r
p=p q=p p=r

Unit (all)
1:~ ¢:1

p:l
p=¢

Universes (COC, COP, TOC, TOP, STOP)

P:S

191

Products (COC, COP, TOC, TOP, STOP)

II x'e=~2: ~
n X : P . Q : "12

I[I x:P=;~q:Q x:P=~Q: 12
A,X.q : I ' [X:P.Q

r : I]X:P.Q
l ie rp : O[p/X]

I'I~ (,LY. q)p = q[p/X]

I-[1" I 2x. (tx) = t

p:P

(X~CX(t))

Sums (TOC, TOP, STOP)

X
X : P =~Q : "12

z~X : P . Q : "12

XI p:P q:Q[p/X] X : P = ~ : ~2

(p,q) : ~.X:P.Q

~,E r.'~X:P.Q X. 'P,Y:Q~s:S[(X,Y) /Z] Z:z~X:P.Q~S: ~ (S~_Q)

v(r,(X,Y).s) : S[r/Zl

Xf~ v((p,q), (X,Y).s) = s[p/X, q/Y]

v(r, (X,Y).t[(X,Y)/Z]) = t[r/Zl (x,r~ cx(o)

Comment. S-~Q mean~ RG(S):RG(Q) or RG(S)=RG(Q). In other words, •E must not be

applied when S is a set and Q a proposition. Due to the next rule, this cannot happen in (S)TOP

at all; so that the condition can be omitted there.

192

Phase distinction (COP, TOP, STOP)

t The context o f a set or an e lement must contain no proposit ions. [

Extent (COP, TOP, STOP)

tx:P
t

zcz:S

a:a
tI

&:ux

t~ v (~) = a

t T t T = 1

k: uz
tE

vk : tx

trl ~(~k) = k

Strict extent (STOP)

8"

5"13

~5*rl

a : ot

S*a : t a x T

v(6~a, (X, *).bl ~ / z]) = bla/z]

Comment. Because of the phase distinction, the (implicite) context in all the extent rules may

contain only sets; la and ~ can be formed only in such a context.

P ~ Q := ITX:P.Q (X~CX(Q))

idp :=)~(,P. X P

~o := aZ.v(Z,(X,Y).X)

P K := K ~ P

x ~ Y := V~: $ 'K . ~ ,-, ¢r

Notations

P x Q := ,~X:P.Q (Xc~CX(Q))

poq := aX.p(qX)

~1 := 2Z.v(Z,(X,Y).Y)

{X:K/ a(X)) := ZX:K.ta(X)

193

Appendix II

Lemmas

1. About Y~. Due to the restriction on ZE (in TOC, or to the phase distinction in TOP) the

projection 7ro:z~:P.Q-~P cannot be formed when P is a set and Q a proposition. The other

three combinations of P and Q (set-set, proposition-set, proposition-proposition) allow both

projections. In these situations, EE can be replaced by the projection rules, as in Hyland-Pitts

1989. (The equivalence of the two presentations follows from 11-13.)

11. ni (go , X l) = Xi, i e2

13. s(TroZ, rClZ) = v(Z, (Xo,X1).s)

12. (~oZ, rClZ) = Z

14. If s((X,Y))=t((X,Y)) then s=t.

15. In the case when P is a set and Q a proposition, the rule Y.E can be modified (following

the idea of 3-elimination) by removing Z:~X:P.Q from the context of S . In the theories

considered here, the full ~E-rule is still derivable from this modified instance. (Cf. Pavlovi6

1990, 1.1.52.)

2. Isomorphisms are of course terms F ~ p . ' P ' ~ P and F~p' :P-~P' , such that p op'=id and

p'op=id. We write p:P'~- P to denote that p is an isomorphism, and P'-~ P to say that an

isomorphism exists.

21. In TOC.

211. a × l -- a

212. The statement:

if p:P' z P and Q(X P) ~- Q'(X P) ~hen DX:P. Q(X) ~- ~3X' :P'. Q'[pXTX]

holds for all types P, P', Q, Q' and for De {z~,/-'/}, with one exception:

A = a does not imply ,~ :K .A ~- z~:K.a.

22. In TOP.

221. t (t a x T) z ta

222. ,,~X:ta.t(fl(~X)) ~- t(,Y_x:a.fl)

223. I-IX:A.tfl ~- t(VX:A.fl)

23. In STOP.

231. t a x T ~- a

232. For u e {•,]-[} holds:

¢ ~ x : a . ~) = ¢cTx:ta.~)

nx :a . f l -- n x : t a , fl

-- ~X:ta.tfl
z (~ x : w : . @ x T

194

Some comments , some proofs.

212. The exception can perhaps be understood by looking at the set A -~o¢ as the extent of ~x.

The sum ,~SX:K.A is then the set {X:K/o:(X)} of all the witnesses of o~(X), while !~/X:K.cx just

says that there is a witness. - For a proof that these two types are not isomorphic one should

consider a model (e.g. in Hyland-Pitts 1989).

221. The isomorphisms are:

X:La ~ 8(X,,*) : t (~ a x 7-)

Y:~(~a x -r) ~ ,~v(zY, (X , ,) . ~) : ~a.

We check one of two identifies that must be proved:

8v(~Y, (X, .~).(¢~'r.X, .)) = ~¢Y = V.

231. x : a ~ ¢~'Vx: taxT,
z: ta × T ~ v (z , (X , , *) . tZ) : a.

One identity:

8"v(z, (x, ,,).~x) ~-

v(z, (x, .) , ,~.(.a))= ,,(z, (x , .) .~x , .))=z

232. Everything follows from previous results, plus:

Z.x : a.fl = BX : w~.fl(¢X) and
tfFlx: o~.~) -- l l x : ,oc.~(13(~x)).

The second isomorphism is obtained using 231 and

,(1-lx:(tax-c).~x)) -- Flx:za.~(~(x, ,)))
And this last iso is definable in the theory of predicates:

z : ,(nx:(,o~xr).~x)) ~ ~x .~((e ;a , . ;) : nx: ,~ . , (~a , . ;))
Y:1-lX:ta.t(~((X, •))) ~ 6Zx..v(x, (X, ,*).'r(YX)): t(l"[x:(ta~7-).y(x))

As for the first of the above isomorphisms, we have

£.x:a.fl - ,(Z.x:a.fl)x T = (ZX: ,a . , f l) x - r ~ 5"X:~a.(Lflx-r) =

= 3X:ta. f l .

The step (#) is a special case of :~:(,,~:A.B).7~-._~:A.3Y:B.y.

195

References

Cartmell, J.

(1986) Generalized algebraic theories and contextual categories, Ann. Pure Appl. Logic

32, 209-243

Church, A.

(1940) A Formulation of the Simple Theory of Types, J. Symbolic Logic, 5(1), pp. 56-

68

Coquand, Th.

(1990) Metamathematical Investigations of a Calculus of Constructions, Logic and

Computer Science (Academic Press)

Coquand, Th., Huet, G.

(1986) Constructions: A higher order proof system of mechanizing mathematics,

EUROCAL 85, Linz , Lecture notes in Computer Science 203 (Springer,

Berlin)

(1988) The Calculus of Constructions, Information and Computation 76, 95-120

Ehrhard, T.

(1989) Dictoses, Category theory in computer science, Lecture Notes in Computer

Science 389 (Springer, Berlin), 213-223

Girard, J.-Y.

(1972) Une extension de l'interpretation de Grdel ~t l'analyse, et son application

rElimination des coupures dans ranalyse et la thdorie des types, Proceedings of

the Second Scandinavian Logic Symposium (North-Holland, Amsterdam) 63-92

Harper, R., Mitchell, J.C., Moggi, E.

(1990) Higher-Order Modules and the Phase Distinction, to appear in the Proceedings

of the 17 th POPL ACM Conference

Hyland, J.M.E., Pitts, A.M.

(1989) The theory of constructions: categorical semantics and topos-theoretic models,

Categories in Computer Science and Logic (Proc. Boulder 1987), Contemporary

Math. (Amer. Math. Soc., Providence RI)

196

Lambek, J., Scott, P.J.

(1986) Introduction to higher order categorical logic, Cambridge studies in advanced

mathematics 7 (Cambridge University Press, Cambridge)

Meseguer, J.

(1989) Relating Models of Polymorphism, Conference Record of the XVI ACM POPL

Symposium, 228-241

Moggi, E.

(1990) A category-theoretic account of program modules, Manuscript

Pavlovit, D.

(1990) Predicates and Fibrations: From Type Theoretical to Category Theoretical

Presentation of Constructive Logic, Thesis (State University Utrecht)

Seely, R.A.G.

(1987) Categorical semantics for higher order polymorphic lambda calculus, J.

Symbolic Logic 52(4), 969-989

Troelstra, A.S., Dalen, D. van

(1988) Constructivism in Mathematics. An Introduction, Studies in Logic and

Foundations of Mathematics 121,123 (North-Holland, Amsterdam)

