
Quantifier Elimination in Ordered Domains ?

Douglas R. Smith

Kestrel Institute
3260 Hillview Avenue

Palo Alto, CA 94304 USA
smith@kestrel.edu

30 April 2019

Abstract. Quantifier elimination is the process of transforming a quantified formula into an equiv-
alent quantifier-free formula. Quantifier elimination rules serve to optimize expressions that nat-
urally arise during the specification, design, and analysis of programs. We present general rules
for eliminating quantifiers over ordered domains and illustrate them with a variety of examples.
A motivating insight is that continuity conditions provide a unifying abstraction that subsumes
quantifier elimination rules over ordered domains.

Keywords: quantifier elimination · program derivation · program verification · partial order ·
Scott-continuous function

1 Introduction

Given an unquantified formula φ over theory T and a variable y, the classical task of Quantifier Elim-
ination (QE) is to transform the quantified formula ∃y.φ into an equivalent unquantified formula φ′.
The equivalence ∃y.φ ≡ φ′ means that both sides have the same set of solutions over the remaining
variables. Eliminating a universal quantifier is treated by reducing it to the existential case.

Historically, quantifier elimination was developed to prove the decidability of theories, such as the first-
order theory of real closed fields, or the first-order theory of the natural numbers with addition (Press-
burger Arithmetic). The general strategy is to show that each quantified expression in the theory is
equivalent to an unquantified expression, then to show that the unquantified expressions are decidable.
Our purpose is different: to define high-level general QE rules that are suitable for implementation in a
deductive framework. In particular, our QE rules are intended to help automatically simplify expressions
that arise during software design and analysis.

The concept of Scott-continuous functions [9] provides a general setting for quantifier elimination over
ordered domains. In this setting the notion of existential/universal quantification is generalized to maxi-
mization/minimization in a partial order or semilattice. QE rules then produce max/min-free expressions
for a given extremized expression.

The main results of this paper are:

1. A general statement of quantifier elimination rules in an order-theoretic setting, together with special
cases of the general rules that are easier to apply.

2. Rules for transforming a quantified expression into weaker and stronger expressions.
3. A range of worked examples to show applicability of the QE rules.

? This work has been sponsored in part by ONR, NSF, DARPA, and by the US Dept. of Defense.



2 Motivating Examples

Quantified expressions play a natural role in specifying many design and analysis problems. Quantifier
elimination then plays a key role in formal reasoning about those problems. This section lists a range of
examples to illustrate the techniques of this paper. Section 5 works through the examples using the QE
rules that we introduce.

Eliminating Variables in Linear Systems: To eliminate variable x from a set of linear inequalities L,
we partition L into those that are monotone in x and those that are antitone in x. Simplifying somewhat
for the sake of focus, the result is a reformulation of the solvability of L as a quantified expression of the
form

∃x. lb ≤ x ∧ x ≤ ub
for unquantified expressions lb and ub that contain no occurrences of x. Eliminating the quantifier in
this case results in the equivalent expression

lb ≤ ub
which has the same set of solutions in the remaining variables as L.

Predicate Transformers: Dijkstra [2] popularized the use of predicate transformers to formalize the
semantics of programming constructs and developed their use for program construction. The weakest
precondition of a statement S is a predicate transformer mapping any postcondition R to the weakest
precondition P such that if S is executed in a state st satisfying P , then the resulting state will satisfy
R:

wp(st, S,R) ≡ ∃(st′:State)(PostS(st, st′) ∧R(st′))

where Post(st, S, st′) gives the valid state transitions of S and R is a state predicate. The definition of
wp for particular classes of statements can be calculated using quantifier elimination on the right-hand
side (RHS).

In system construction settings, a game-like mechanism is needed to construct a feasible strategy. Suppose
that the system (protagonist) wants to achieve a next state st′ satisfying R(st′) by making an action
α ∈ SysAct, but the uncontrolled environment (antagonist) will simultaneously take some action β ∈
EnvAct. The semantics of the joint action τ is Postτ (st, α, β, st′) which relates the pre-state st, actions
α and β, and the post-state st′. The weakest precondition in this game-like setting is

wp(st, τ, R) ≡ ∃(α)(α ∈ SysAct ∧ ∀(β)(β ∈ EnvAct =⇒ ∃(st′:State)(Postτ (st, α, β, st′) ∧R(st′))))

which requires three QE steps. The result defines the initial states from which the system can perform
action α assured that no matter which action β the environment might take, the resulting state will
satisfy R.

Algorithm Design: In the theory of backtrack algorithms, called global search theory [11, 12], pruning
mechanisms are specified by a quantified formula:

∃(z)(z v r̂ ∧O(x, z))
where r̂ is a partial solution and z is a refinement of it to a complete solution, O(x, z) asserts that z is
a feasible solution with respect to input x. Elimination of the quantifier gives a test as to whether the
current partial solution r̂ can be extended to a complete feasible solution – if not, then it can be pruned
from further consideration.

Suppose we are designing a global search algorithm for cost minimization. We would like to know a lower
bound on the cost of any feasible solution that extends the current partial solution r̂ . This too can be
specified by a quantified expression:

min
zvr̂ ∧ O(x,z)

cost(x, z)

2



where r̂ is a partial solution, z is a refinement of r̂ , and O(x, z) asserts that z is a feasible solution with
cost cost(x, z). Elimination of the minimization quantifier gives a test as to whether the current partial
assignment r̂ can be extended to a complete minimal-cost solution – if not, then it can be pruned from
further consideration. Note that this example illustrates the use of a non-Boolean quantifier.

Temporal Propagation in Scheduling: Scheduling problems are often treated as constraint satis-
faction/optimization problems where a given set of tasks must be assigned start times and resources
for their accomplishment subject to some constraints. A key step in calculating a scheduling program
is deriving a constraint propagation algorithm, which propagates local decisions about start times and
resources to other parts of a partial schedule to further constrain the allocation of time and resources
to related tasks. In [13] we show how constraint propagation rules can be systematically generated from
concrete constraints, and QE laws play a central role. The start time st of a task is often represented
abstractly by a time window: 〈earliestStartT ime, latestStartT ime〉, abbreviated 〈est, lst〉. That is, if
sti is a variable representing the (concrete, unknown) start time of task i, then esti ≤ sti ≤ lsti represent
bounds on feasible values for sti.

A typical scheduling constraint expresses that task i must finish before task i+ 1 can start:
sti + durationi ≤ sti+1

over tasks executing on a unit-capacity resource, such as a printer. This binary constraint gives rise to
arc-consistency constraints on the abstract representation, such as

∀st1(est1 ≤ st1 ≤ lst1 =⇒ ∃st2(est2 ≤ st2 ≤ lst2 ∧ st1 + duration ≤ st2))
When QE is applied, the result is unquantified definite constraints [8], which can be propagated very
efficiently via fixpoint iteration.

3 Basic Concepts

A partially ordered set (poset) P = 〈P,�〉 is an upward-directed set if P is nonempty and every pair of
elements of P has an upper bound. P is a downward-directed set if it is nonempty and every pair of ele-
ments has a lower bound. The term directed set may refer to either case. Directed sets are generalizations
of sequences, linearly-ordered sets, and semilattices in that every finite subset Q of an upward-directed
set P has a unique maximum element in Q (and dually, every finite subset Q of a downward-directed
set P has a unique minimum element in Q). They have been an important concept in generalizing the
notion of the limit of a convergent sequence from analysis.

The following proposition provides a common sufficient condition that a poset is directed.

Proposition 1. Let P = 〈P,�〉 be a poset and D ⊆ P . If D has a maximal element d̂ ∈ D, then D is
an upward-directed set. Dually, if D has a minimal element ď ∈ D, then D is a downward-directed set.

Proof. Let d̂ ∈ D be a maximal element of D. D is nonempty since d̂ ∈ D, and for any pair d1, d2 ∈ D
we have d̂ as an upper bound, so D is an upward-directed set. Similar reasoning handles the dual case.
ut

A poset P = 〈P,≤〉 is a join semilattice 〈P,t,≤〉 if it has a binary least upper bound operator t, called
join. P is a meet semilattice 〈P,u,≤〉 if it has a binary greatest lower bound operator u, called meet. P
is a lattice 〈P,u,t,≤〉 if it has both a meet and join operator.

A (semi)lattice quantifier is the meet or join of an expression over the elements of a partially ordered
set. We use the notation

⊔
a∈A F (a) and dually

d
a∈A F (a) to quantify the expression F (a) over the

3



set A. Although F is treated here as a unary function, the intent is that it is an unquantified expression
over variable a plus other variables. The usual logical quantifiers ∃ and ∀ are special cases of a lattice
quantifier over an expression from the usual Boolean lattice 〈Boolean,∧,∨,⇒〉:

∃a:A. F (a) ≡
∨
a∈A F (a)

and
∀a:A. F (a) ≡

∧
a∈A F (a).

Meet quantifiers are monotone in their domain and join quantifiers are antitone in their domain, as
summarized in the following Quantifier Change (QC) rules:

D ⊆ E and f :E → 〈L,t,u,≤〉
QC1

⊔
a∈D f(a) ≤

⊔
a∈E f(a) QC2

d
a∈D f(a) ≥

d
a∈E f(a)

Let P = 〈P,�〉 and Q = 〈Q,≤〉 be posets and let F :P → Q. F is monotone if x � y =⇒ F (x) ≤ F (y).
F is antitone if x � y =⇒ F (y) ≤ F (x). F is Scott-continuous [9], or simply continuous, if for every

upward-directed subset D ⊆ P that has a supremum d̂ ∈ P , the set {F (d) | d ∈ D} has a supremum

that is F (d̂), i.e. ⊔
d∈D

F (d) = F (
⊔
d∈D

d) = F (d̂).

Dually, F is continuous if for every downward-directed subset D ⊆ P that has an infimum ď ∈ P , then

l

d∈D

F (d) = F (
l

d∈D

d) = F (ď).

4 Quantifier Elimination Laws

Quantifier elimination rules transform a quantified expression into an equivalent quantifier-free expres-
sion. Lattice quantifiers are useful in formally specifying programs and their properties, and laws to
eliminate them are a powerful tool during program design and analysis.

General Cases: We focus on the problem of eliminating a single quantifier over an unquantified ex-
pression F . Multiple quantifiers can be handled iteratively. We treat F as a function of a single variable
F :P → Q, treating the other variables as constants for the purposes of quantifier elimination. Each of
our QE rules quantifies over a directed subset D ⊆ P . A basic question is whether D has a supremum
(resp. infimum) at all, and, if it does, then whether it is in D or P . In general, if P is a poset, then
D does not necessarily have a supremum (resp. infimum). If P is a cpo, then by definition a unique
supremum (resp. infimum) exists and sup(D) ∈ P (resp. inf(D) ∈ P ).

Continuity conditions provide the general form of quantifier elimination rules over ordered domains. Let
P = 〈P,�〉 and Q = 〈Q,≤〉 be posets.

F :P → Q is monotone continuous F :P → Q is monotone continuous

D ⊆ P an upward-directed set with supremum d̂ D ⊆ P a downward-directed set with infimum ď

QE 1.1
⊔
a∈D F (a) = F (

⊔
a∈D a) = F (d̂) QE 1.2

d
a∈D F (a) = F (

d
a∈D a) = F (ď)

F :P → Q is antitone continuous F :P → Q is antitone continuous

D ⊆ P a downward-directed set with infimum ď D ⊆ P an upward-directed set with supremum d̂

QE -1.1
⊔
a∈D F (a) = F (

d
a∈D a) = F (ď) QE -1.2

d
a∈D F (a) = F (

⊔
a∈D a) = F (d̂)

4



Applying one of these rules left-to-right eliminates the quantification of F over its P -valued parameter,
replacing the parameter with a constant. The four rules QE ±1.1, ±1.2 simply restate the definition of
a continuous function between posets, so they require no proof.

The applicability of these rules can be broadened by combining them with the quantifier change rules
QC1 and QC2 in cases where the quantification is over a subset or superset of a directed subset. This
can arise when an extra constraint is placed on the elements of a directed set, or when the quantification
domain has a directed subset. For example, if an extra constraint c is placed on elements of a directed
set D, i.e. such that D′ = {d | d ∈ D ∧ c(d)} ⊆ D. By applying QC1 then QE 1.1, we get⊔

a∈D′ F (a) ≤
⊔
a∈D F (a) = F (d̂)

To apply one of the QE rules requires checking several applicability conditions. For example, applying
rule QE 1.1 requires verifying

1. F is continuous: Meeting this condition may seem circular since it is tantamount to verifying the
very rule that we are trying to apply. However, the development of domain theory in denotational
semantics has shown that most programming constructs are Scott-continuous, as too are many data
structure and math operators [6]. Moreover, continuity is compositional. Recursive analysis of the
syntax of expression F (a) together with tables of known continuous functions and language constructs
allows for efficient determination of whether it is continuous.

2. Determine the polarity of F (a) relative to a: Any continuous function is either monotone or antitone.
The polarity of a in F (a) may be calculated via recursive analysis of the (term) structure of F [7].

3. D is an upward-directed set: This requires showing that every pair of elements in D has an upper
bound.

4.
⊔
a∈D a = d̂ exists.

5.
⊔
a∈D F (a) exists.

6.
⊔
a∈D F (a) = F (d̂).

The generality of QE rules based on Scott-continuity stems from the need to handle the supremum/infimum
of infinite directed sets. By formulating special cases of these rules, we can simplify the applicability
conditions. An important special case occurs when poset D has a maximal or minimal element (i.e.
Proposition 1 holds).

F :P → Q is monotone F :P → Q is monotone

D ⊆ P with maximum d̂ ∈ D D ⊆ P with minimum ď ∈ D
QE 2.1

⊔
a∈D F (a) = F (

⊔
a∈D a) = F (d̂) QE 2.2

d
a∈D F (a) = F (

d
a∈D a) = F (ď)

F :P → Q is antitone F :P → Q is antitone

D ⊆ P with minimum ď ∈ D D ⊆ P with maximum d̂ ∈ D
QE -2.1

⊔
a∈D F (a) = F (

d
a∈D a) = F (ď) QE -2.2

d
a∈D F (a) = F (

⊔
a∈D a) = F (d̂)

Under these conditions we have sup(D) = max(D) and checking the applicability conditions becomes
simpler. For example, the applicability of rule QE 2.1 requires

1. Determining the polarity of F (a) relative to a: again, this requires analyzing an expression for the
polarity of a variable (or subexpression). The polarity of parameters to common language constructs,
data structure operations, and math functions are well-known and can be tabulated. Moreover,
polarities are compositional, allowing efficient analysis of polarities of an expression [7].

2. Showing max(D) = d̂ exists: This can be checked by analyzing the expression that defines D.

To prove rule QE 2.1, assume that F (a) is monotone in a, and D is a subset of P with maximal element

d̂ ∈ D. F (d̂) is an upper bound on F (D), since by assumption d � d̂ for each d ∈ D, so F (d) ≤ F (d̂)

5



by monotonicity. F (d̂) is the least upper bound on F (D), since for any upper bound d′ ∈ P on D, we

have d̂ ≤ d′, hence F (d̂) ≤ F (d′). Proofs of other rules are similar.

Specialization to the Discrete Order: Equality is a special case of a partial order, and the usual
substitution-of-equals-for-equals rule (Leibniz) falls out as the special case of quantifying over a singleton
domain.

Specialization to Predicates: When F is a predicate, the QE2 laws can be restated in more familiar
syntax. Let P = 〈P,�〉 be a poset and let F :P → 〈Boolean,∧,∨,⇒〉.

F :P → 〈Boolean,∧,∨,⇒〉 is monotone, F :P → 〈Boolean,∧,∨,⇒〉 is monotone,

D ⊆ P with maximum d̂ ∈ D D ⊆ P with minimum ď ∈ D
QE 3.1 ∃(a:P )(a ∈ D ∧ F (a)) ≡ F (d̂) QE 3.2 ∀(a:P )(a ∈ D =⇒ F (a)) ≡ F (ď)

F :P → 〈Boolean,∧,∨,⇒〉 is antitone, F :P → 〈Boolean,∧,∨,⇒〉 is antitone,

D ⊆ P with minimum ď ∈ D D ⊆ P with maximum d̂ ∈ D
QE -3.1 ∃(a:P )(a ∈ D ∧ F (a)) ≡ F (ď) QE -3.2 ∀(a:P )(a ∈ D =⇒ F (a)) ≡ F (d̂)

Specialization to Propositional Expressions: The specialization of quantifier elimination to propo-
sitional expressions (e.g. as in SAT and QBF problems) is as follows.

F : 〈Boolean,⇒〉 → 〈Boolean,∧,∨,⇒〉 is monotone

QE 4.1 ∃(a:Boolean) F (a) ≡ F (true) QE 4.2 ∀(a:Boolean) F (a) ≡ F (false)

F : 〈Boolean,⇒〉 → 〈Boolean,∧,∨,⇒〉 is antitone

QE -4.1 ∃(a:Boolean) F (a) ≡ F (false) QE -4.2 ∀(a:Boolean) F (a) ≡ F (true)

QE ±4.1 and ±4.2 are the basis for Pure Literal Rules in SAT and QBF solving. They also provide strong
simplication rules in logic circuit design and verification. To prove them, note that we are quantifying
over the finite set {true, false} which has a maximum element true and a minimum element false.

QE over Boolean expressions with mixed polarity: Resolution rules in logic provide an example
of quantifier elimination rules for expressions that contain subexpressions of differing polarities. The
resolvant of expression F [a] ∧G[a] is the logical consequence ∃(a)F [a] ∧G[a]. The following laws build
on earlier QE laws.

monotone F : 〈Boolean,⇒〉 → 〈Boolean,∧,∨,⇒〉,
antitone G : 〈Boolean,⇒〉 → 〈Boolean,∧,∨,⇒〉

QE 5.1 ∃(a:Boolean)(F (a) ∧G(a))⇒ (F (false) ∨G(true))

QE 5.2 ∃(a:Boolean)(F (a) ∨G(a)) ≡ (F (true) ∨G(false))

QE 5.3 ∀(a:Boolean)(F (a) ∧G(a)) ≡ (F (false) ∧G(true))

QE 5.4 ∀(a:Boolean)(F (a) ∨G(a))⇐ (F (true) ∧G(false))

To prove QE 5.1, we assume F is monotone and G is antitone, and first prove a simple consequence

∃(a:Boolean)(F (a) ∧G(a))
⇒ ∃(a:Boolean)F (a) ∧ ∃(a:Boolean)G(a) distributing the quantification

≡ F (true) ∧ G(false). applying QE 4.1 and QE -4.1

Then from the top:

6



∃(a:Boolean)(F (a) ∧G(a)) LHS of QE5.1

≡ (F (false) ∧G(false)) ∨ (F (true) ∧G(true)) unfolding the quantification

⇒ (F (false) ∧ true) ∨ (true ∧G(true)) using F (true) ∧ G(false)

≡ F (false) ∨ G(true). simplifying

To prove QE 5.2:

∃(a:Boolean)(F (a) ∨G(a)) LHS of QE5.2

≡ ∃(a:Boolean)F (a) ∨ ∃(a:Boolean)G(a)) distributing the quantification

≡ F (true) ∨ G(false). applying QE 4.1 and -4.1

The other laws are proved similarly. The Cut Rule from Propositional Logic, Generalized Resolution [7],
and inference rules in other logics can be derived using these rules [13].

QE over real linear expressions with mixed polarity: Linear constraints over the reals provide
another class of quantifier elimination rules that apply to expressions containing mixed polarities.

monotone linear F : 〈R,≤〉 → 〈R,≤〉, x` ≤ xu
QE 6.1 ∃(x:R)(x ∈ [x`, xu] ∧ a ≤ F (x) ≤ b) ≡ a ≤ F (xu) ∧ F (x`) ≤ b ∧ a ≤ b
QE 6.2 ∀(x:R)(x ∈ [x`, xu] =⇒ a ≤ F (x) ≤ b) ≡ a ≤ F (x`) ∧ F (xu) ≤ b

antitone linear F : 〈R,≤〉 → 〈R,≤〉, x` ≤ xu
QE -6.1 ∃(x:R)(x ∈ [x`, xu] ∧ a ≤ F (x) ≤ b) ≡ a ≤ F (x`) ∧ F (xu) ≤ b ∧ a ≤ b
QE -6.2 ∀(x:R)(x ∈ [x`, xu] =⇒ a ≤ F (x) ≤ b) ≡ a ≤ F (xu) ∧ F (x`) ≤ b

To prove QE 6.1, we assume F is linear and monotone, hence it has the form F (x) = αx + β for some
α, β. If α = 0, then F is constant and both sides of QE 6.1 simplify to true. So we assume α > 0 and
decompose the equivalence into two implications and proceed by case analysis.
Case (⇒): Let x′ be a value such that x` ≤ x′ ≤ xu ∧ a ≤ F (x′) ≤ b (implying a ≤ b). By monotonicity,
we have F (x`) ≤ F (x′) ≤ b and a ≤ F (x′) ≤ F (xu).
Case (⇐): Assume a ≤ F (xu) ∧ F (x`) ≤ b ∧ a ≤ b. We proceed by case analysis on the value of F (x`).
First, if a ≤ F (x`), then let x′ = x` and we have x` ≤ x′ ≤ xu (since x` ≤ xu) and a ≤ F (x′) ≤ b, so
x′ is a witness to the existential. Second, if F (x`) < a, then consider an increment to x` to increase F ’s
value to a: we have F (x′) = a for x′ = x` + (a − αx` − β)/α. Since F (x′) = a ≤ F (xu), it follows that
x′ ≤ xu since F is strictly monotone (α > 0), hence x` ≤ x′ ≤ xu. We also have a = F (x′) ≤ b since
a ≤ b, hence x′ is a witness to the existential. �

To prove QE 6.2, we assume F is linear and monotone, hence it has the form F (x) = αx + β for some
α, β. If α = 0, then F is constant and both sides of QE 6.2 simplify to true. So we assume α > 0 and
decompose the equivalence into two implications and proceed by case analysis.
Case (⇒): Assume that for an arbitrary x′ such that x` ≤ x′ ≤ xu we have a ≤ F (x′) ≤ b. For x′ = x`,
we have a ≤ F (x` and for x′ = xu, we have F (xu) ≤ b.
Case (⇐): Suppose a ≤ F (x`) and F (xu) ≤ b, and let x′ be an arbitrary value such that x` ≤ x′ ≤ xu.
Using our assumptions and monotonicity of F we have a ≤ F (x`) ≤ F (x′) ≤ F (xu) ≤ b. �

The proofs of the other rules are similar.

7



5 Worked Examples

Eliminating Variables in Linear Systems: The Fourier-Motzkin method for eliminating variables in
systems of linear equations over ordered fields (e.g. the reals) was discovered independently by Fourier
(1836), Dines (1918), and Motzkin (1936). Given unquantified expressions lb and ub that contain no
occurrences of x, Fourier-Motzkin essentially works as follows on the quantified expression

∃x. lb ≤ x ∧ x ≤ ub
≡ inf({x | lb ≤ x}) ≤ ub apply QE -3.1 where F 7→ λx. x ≤ ub

and D = {x | lb ≤ x}
≡ lb ≤ ub. simplifying

The same result can be obtained by applying QE 3.1 appropriately.

Predicate Transformers: The definition of wp for particular classes of statements can be calculated
using quantifier elimination. wp is used to calculate with stateful operators. We treat state as an envi-
ronment map from variables to values, and use a map update function m� {v = e} to denote the new
map m′ that is the same as m except that m′(v) = e. The value of expression e in state st is written
st[e]. The weakest precondition of an assignment statement is calculated as follows.

wp(st, x:= e,R)
≡ ∃(st′:State)(Post(st, x:= e, st′) ∧ st′[R]) definition

≡ ∃(st′:State)(st′ = st� {x = e} ∧ st′[R]) definition of Post

≡ st� {x = e}[R]. applying QE 6.1

Other predicate transformer expressions are calculated in a similar way.

A more complex example arises from controller synthesis design problems [10]. Suppose that we are
modeling a system with two real-valued state variables x1 and x2 and a linear transition function

F (x1, x2, u, d) = 〈x1 + d− x2, x2 + u〉

where u ∈ [−1, 1] is a control input and d ∈ [0, 4] is an uncontrollable disturbance. The goal is to enforce
that the result of a transition satisfies a safety constraint φ ≡ 0 ≤ x1 ≤ 20 ∧ 0 ≤ x2 ≤ 4, giving rise
to a game-like weakest precondition formula wp(〈x1, x2〉, F, φ):

∃(u)(u ∈ [−1, 1] ∧ ∀(d)(d ∈ [0, 4] =⇒ ∃(x′1, x′2)(〈x′1, x′2〉 = F (x1, x2, u, d) ∧ 0 ≤ x′1 ≤ 20 ∧ 0 ≤ x′2 ≤ 4))).

and we calculate as follows:

wp(〈x1, x2〉, F, φ)

≡ { definition }

∃(u)(u ∈ [−1, 1] ∧ ∀(d)(d ∈ [0, 4] =⇒ ∃(x′1, x′2)(〈x′1, x′2〉 = F (x1, x2, u, d) ∧ 0 ≤ x′1 ≤ 20 ∧ 0 ≤ x′2 ≤ 4)))

≡ { applying QE 6.1 on the innermost quantification, singleton domain }

∃(u)(u ∈ [−1, 1] ∧ ∀(d)(d ∈ [0, 4] =⇒ 0 ≤ F (x1, x2, u, d).1 ≤ 20 ∧ 0 ≤ F (x1, x2, u, d).2 ≤ 4))

≡ { unfolding the definition of F }

8



∃(u)(u ∈ [−1, 1] ∧ ∀(d)(d ∈ [0, 4] =⇒ 0 ≤ x1 + d− x2 ≤ 20 ∧ 0 ≤ x2 + u ≤ 4))

≡ { rearranging }

∃(u)(u ∈ [−1, 1] ∧ 0 ≤ x2 + u ≤ 4 ∧ ∀(d)(d ∈ [0, 4] =⇒ 0 ≤ x1 + d− x2 ≤ 20))

≡ { applying QE 6.2 on the quantification of d }

∃(u)(u ∈ [−1, 1] ∧ 0 ≤ x2 + u ≤ 4 ∧ 0 ≤ x1 + 0− x2 ∧ x1 + 4− x2 ≤ 20)

≡ { rearranging }

0 ≤ x1 − x2 ≤ 16 ∧ ∃(u)(u ∈ [−1, 1] ∧ 0 ≤ x2 + u ≤ 4)

≡ { applying QE 6.1 on the quantification of u }

0 ≤ x1 − x2 ≤ 16 ∧ 0 ≤ x2 + 1 ∧ x2 − 1 ≤ 4

≡ { rearranging}

0 ≤ x1 − x2 ≤ 16 ∧ −1 ≤ x2 ≤ 5.

The result is the set of states from which there is a control input that lands the system in a safe state
after one transition, no matter what the disturbance is.

Algorithm Design: In global search theory [11, 12], pruning mechanisms are specified by a quantified
expression:

∃z. O(x, z) ∧ z v r̂
where O asserts that z is a feasible solution and the other subexpression asserts that z is an instance of
the abstract domain element r̂ .

For example, problems such as the k-queens or the Traveling Salesman Problem seek a permutation of a
set with certain properties. A global search algorithm searching over permutations might interpret the
abstract domain element as a (partial solution) sequence ps with the requirement that a complete solution
must be an injection to a set, say, S, which we express as the constraint injective(z, S). Interpreting
feasibility condition O as injective(z, S), which is antitone, and the refinement relation z v r̂ as the
function extends(z, ps) (i.e. the sequence z is an extension of ps or ps is a suffix of z), we instantiate the
pruning specification as

∃z. injective(z, S) ∧ extends(z, ps).
With this much structure, we can calculate

∃z. injective(z, S) ∧ extends(z, ps)
≡ injective(min({z | extends(z, ps)}), S) apply QE -3.1 where F is λz. injective(z, S)

and directed subset D is {z | extends(z, ps)}
≡ injective(ps, S). simplifying

We use the result as a pruning test: if injective(ps, S) is false for some partial solution ps during search
then we know there do not exist any feasible solutions that extend ps so we can eliminate it from further
consideration/search. In the above calculation, we focused on just one constraint, but typically a feasible
solution satisfies a conjunction of constraints and we select just those conjuncts that are monotone to
derive a pruning test.

9



A similar derivation can be given for the optimization pruning mechanism given earlier. It is typically
the case that cost(x, z) is the linear function c · z which is monotone in the candidate solution sequence
z. Instantiating the cost minimization specification, we get

min
extends(z,ps) ∧ injective(ps,S)

c · z

≥ min
extends(z,ps)

c · z apply QC2

= c ·min({z | extends(z, ps)}) apply QE 2.2 where monotone F is λz. c · z
and D is {z | extends(z, ps)}

= c · ps. simplifying

This expression provides a lower-bound function on the cost of feasible solutions that refine the partial
solution ps.

Temporal Propagation in Scheduling: We can apply QE to derive constraint propagation rules from
the formula that relates the concrete start times of tasks to their abstract time windows:

∀st1(est1 ≤ st1 ≤ lst1 =⇒ ∃st2(est2 ≤ st2 ≤ lst2 ∧ st1 + duration ≤ st2))
≡ ∀st1(est1 ≤ st1 ≤ lst1 =⇒ st1 + duration ≤ lst2) applying QE 3.1

≡ lst1 + duration ≤ lst2. applying QE -3.2

A similar calculation applying QE -3.1 then QE 3.2 yields

∀st2(est2 ≤ st2 ≤ lst2 =⇒ ∃st1(est1 ≤ st1 ≤ lst1 ∧ st1 + duration ≤ st2)) ≡ est1 + duration ≤ est2.

The results are definite constraints that can be used to propagate the effect of decisions on time windows,
ensuring that the current partial valuation is temporally consistent.

6 Related Work

Many problems can be formulated in terms of quantifier elimination in some theory T , but cannot
be solved simply based on the order properties of T . Let φ be a constraint over the variables V =
{v1, v2, · · · , vn} and the vocabulary of T . Constraint solving seeks to determine if there exists a structure
for T

⋃
V that satisfies φ; i.e. T |= ∃(V )φ. Such a solution structure can be expressed as quantifier-free

formula of the form v1 = c1 ∧ v2 = c2 ∧ · · · ∧ vn = cn where each ci, i = 1, .., n is a constant. It is a
sufficient condition of ∃(V )φ. Theorem proving (validity checking) is dual to constraint-solving in that
the task is to show that all structures over T

⋃
V satisfy the given constraint φ modulo T . Typically

this involves mostly universal quantification. As a QE problem, the task is to show that the universally
quantified formula is equivalent to the unquantified constant true.

Cylindrical Algebra Decomposition is a quantifier elimination algorithm that is specialized to closed real
fields, allowing quantifier elimination over systems of polynomials [1].

Projection techniques (that reduce dimensionality of set of constraints) are a form of quantifier elimina-
tion and are known to provide a unifying view of logical inference and optimization [4].

Gulwani and Musuvathi [3] define a notion of eliminating existential quantifiers by finding their least
upper bound when the contextual theory cannot express an equivalent unquantified expression. A bound
is often sufficient in program analysis tasks.

10



7 Conclusion

We have presented general rules for eliminating quantifiers over ordered domains and illustrated them
with a variety of examples. These rules provide a component of a deductive inference capability that is
useful in program calculation and program verification. They generalize and simplify rules that we have
used in several program synthesis systems [5, 12].

Acknowledgments: Thanks to Christoph Kreitz and Julia Leighton for comments on this paper.

References

1. Collins, G. E. Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In
Automata Theory and Formal Languages 2nd GI Conference (1975), Springer, pp. 134–183.

2. Dijkstra, E. W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, NJ, 1976.
3. Gulwani, S., and Musuvathi, M. Cover algorithms and their combination. In Programming Languages

and Systems (2008), Springer, pp. 193–207.
4. Hooker, J. N. Projection, consistency, and George Boole. Constraints 21, 1 (2016), 59–76.
5. Kestrel Institute. Specware System and documentation, 2003. http://www.specware.org/.
6. Manna, Z. Mathematical Theory of Computation. New York, McGraw-Hill, 1974.
7. Manna, Z., and Waldinger, R. Special relations in automated deduction. Journal of the ACM 33, 1

(January 1986), 1–59.
8. Rehof, J., and Mogenson, T. Tractable constraints in finite semilattices. Science of Computer Program-

ming 35 (1999), 191–221.
9. Scott, D. Continuous lattices. In Toposes, Algebraic Geometry and Logic (1972), F. W. Lawvere, Ed.,

Springer, pp. 97–136.
10. Slanina, M., Sankaranarayanan, S., Sipma, H., and Manna, Z. Controller synthesis of discrete linear

plants using polyhedra. Tech. rep., Technical Report REACT-TR-2007-01, Stanford University, 2007.
11. Smith, D. R. Structure and design of global search algorithms. Tech. Rep. KES.U.87.12, Kestrel Institute,

November 1987. ftp://ftp.kestrel.edu/pub/papers/smith/gs.pdf.
12. Smith, D. R. KIDS – a semi-automatic program development system. IEEE Transactions on Software

Engineering Special Issue on Formal Methods in Software Engineering 16, 9 (1990), 1024–1043.
13. Smith, D. R., and Westfold, S. Toward the Synthesis of Constraint Solvers. Tech. rep., Kestrel Institute,

2013. http://www.kestrel.edu/home/people/smith/pub/CW-report.pdf.

11



Quantifier Elimination and Quantifier Change Rules

F :P → Q is monotone continuous F :P → Q is monotone continuous

D ⊆ P an up-directed set with supremum d̂ D ⊆ P a down-directed set with infimum ď

QE 1.1
⊔
a∈D F (a) = F (d̂) QE 1.2

d
a∈D F (a) = F (ď)

F :P → Q is antitone continuous F :P → Q is antitone continuous

D ⊆ P a down-directed set with infimum ď D ⊆ P an up-directed set with supremum d̂

QE -1.1
⊔
a∈D F (a) = F (ď) QE -1.2

d
a∈D F (a) = F (d̂)

F :P → Q is monotone F :P → Q is monotone

D ⊆ P with maximum d̂ D ⊆ P with minimum ď

QE 2.1
⊔
a∈D F (a) = F (d̂) QE 2.2

d
a∈D F (a) = F (ď)

F :P → Q is antitone F :P → Q is antitone

D ⊆ P with minimum ď D ⊆ P with maximum d̂

QE -2.1
⊔
a∈D F (a) = F (ď) QE -2.2

d
a∈D F (a) = F (d̂)

F :P → 〈Boolean,∧,∨,⇒〉 is monotone, F :P → 〈Boolean,∧,∨,⇒〉 is monotone,

D ⊆ P with maximum d̂ D ⊆ P with minimum ď

QE 3.1 ∃(a:P )(a ∈ D ∧ F (a)) ≡ F (d̂) QE 3.2 ∀(a:P )(a ∈ D =⇒ F (a)) ≡ F (ď)

F :P → 〈Boolean,∧,∨,⇒〉 is antitone, F :P → 〈Boolean,∧,∨,⇒〉 is antitone,

D ⊆ P with minimum ď D ⊆ P with maximum d̂

QE -3.1 ∃(a:P )(a ∈ D ∧ F (a)) ≡ F (ď) QE -3.2 ∀(a:P )(a ∈ D =⇒ F (a)) ≡ F (d̂)

F : 〈Boolean,⇒〉 → 〈Boolean,∧,∨,⇒〉 is monotone
QE 4.1 ∃(a:Boolean) F (a) ≡ F (true) QE 4.2 ∀(a:Boolean) F (a) ≡ F (false)

F : 〈Boolean,⇒〉 → 〈Boolean,∧,∨,⇒〉 is antitone
QE -4.1 ∃(a:Boolean) F (a) ≡ F (false) QE -4.2 ∀(a:Boolean) F (a) ≡ F (true)

monotone F : 〈Boolean,⇒〉 → 〈Boolean,∧,∨,⇒〉,
antitone G : 〈Boolean,⇒〉 → 〈Boolean,∧,∨,⇒〉

QE 5.1 ∃(a:Boolean)(F (a) ∧G(a))⇒ (F (false) ∨G(true))
QE 5.2 ∃(a:Boolean)(F (a) ∨G(a)) ≡ (F (true) ∨G(false))
QE 5.3 ∀(a:Boolean)(F (a) ∧G(a)) ≡ (F (false) ∧G(true))
QE 5.4 ∀(a:Boolean)(F (a) ∨G(a))⇐ (F (true) ∧G(false))

monotone linear F : 〈R,≤〉 → 〈R,≤〉, x` ≤ xu
QE 6.1 ∃(x:R)(x ∈ [x`, xu] ∧ a ≤ F (x) ≤ b) ≡ a ≤ F (xu) ∧ F (x`) ≤ b ∧ a ≤ b
QE 6.2 ∀(x:R)(x ∈ [x`, xu] =⇒ a ≤ F (x) ≤ b) ≡ a ≤ F (x`) ∧ F (xu) ≤ b

antitone linear F : 〈R,≤〉 → 〈R,≤〉, x` ≤ xu
QE -6.1 ∃(x:R)(x ∈ [x`, xu] ∧ a ≤ F (x) ≤ b) ≡ a ≤ F (x`) ∧ F (xu) ≤ b ∧ a ≤ b
QE -6.2 ∀(x:R)(x ∈ [x`, xu] =⇒ a ≤ F (x) ≤ b) ≡ a ≤ F (xu) ∧ F (x`) ≤ b

D ⊆ E and f :E → 〈L,t,u,≤〉
QC1

⊔
a∈D f(a) ≤

⊔
a∈E f(a) QC2

d
a∈D f(a) ≥

d
a∈E f(a)

12


