
Transformational Approach to Transportation Scheduling

Douglas R. Smith and Eduardo A. Parra

Kestrel Institute

3260 Hillview Avenue

Palo Alto, California 94304

Abstract

We have used KIDS (Kestrel Interactive Devel-
opment System) to derive extremely fast and accu-
rate transportation schedulers from formal specifica-
tions. As test data we use strategic transportation
plans which are generated by U.S. government plan-
ners. In one such problem, the derived scheduler was
able to schedule 15,460 individual movement require-
ments in 71 cpu seconds. The computed schedules use
relatively few resources and satisfy all specified con-
straints. The speed of this scheduler derives from the
synthesis of strong problem-specific constraint check-
ing and constraint propagation code.

1 Introduction

This paper describes our exploration of the trans-
formational development of transportation schedulers.
Our approach involves several stages. The first step
is to develop a formal model of the transportation
scheduling domain, called a domain theory. Second,
the constraints, objectives, and preferences of a par-
ticular scheduling problem are stated within a domain
theory as a problem specification. Finally, an exe-
cutable scheduler is produced semiautomatically by
applying a sequence of transformations to the problem
specification. The transformations embody program-
ming knowledge about algorithms, data structures,
program optimization techniques, etc. The result of
the transformation process is executable code that is
guaranteed to be consistent with the given problem
specification. Furthermore, the resulting code can be
extremely efficient.

Transportation scheduling tools currently used by
the U.S. government are based on models of the
transportation domain that few people understand
[8]. Consequently, users often do not trust that the
scheduling results reflect their particular needs. Our
approach tries to address this issue by making the do-
mainmodel and scheduling problem explicit and clear.
If a scheduling situation arises which is not treated
by existing scheduling tools, the user can specify the
problem and generate an situation-specific scheduler.

One of the benefits of a transformational approach
to scheduling is the synthesis of specialized constraint
management code. Previous systems for performing

scheduling in AI (e.g. [6, 5, 22, 21]) and Operations
Research [2, 11] use constraint representations and op-
erations that are geared for a broad class of problems,
such as constraint satisfaction problems or linear pro-
grams. In contrast, transformational techniques can
derive specialized representations for constraints and
related data, and also derive efficient specialized code
for constraint operations such as constraint propaga-
tion and constraint checking.

The U.S. Transportation Command and the com-
ponent service commands use a relational database
scheme called a TPFDD (Time-Phased Force and De-
ployment Data) for specifying the transportation re-
quirements of an operation, such as Desert Storm or
the Somalia relief effort. We developed a domain the-
ory of TPFDD scheduling defining the concepts of this
problem and developed laws for reasoning about them.
KIDS (Kestrel Interactive Development System) was
used to derive and optimize a variety of global search
scheduling algorithms that perform constraint propa-
gation [20]. The resulting code, generically called KTS
(Kestrel Transportation Scheduler), has been run on
a variety of TPFDDs generated by planners at US-
TRANSCOM and other sites. With one such TPFDD
problem, KTS was able to schedule 15,460 individual
movement requirements in 71 cpu seconds. The sched-
ule used relatively few resources and satisfied all spec-
ified constraints. KTS is orders of magnitude faster
than any other TPFDD scheduler known to us.

2 KIDS model of program develop-

ment

KIDS is a program transformation system – one
applies a sequence of consistency-preserving transfor-
mations to an initial specification and achieves a cor-
rect and hopefully efficient program [17]. The sys-
tem emphasizes the application of complex high-level
transformations that perform significant and meaning-
ful actions. From the user’s point of view the system
allows the user to make high-level design decisions like,
“design a divide-and-conquer algorithm for that speci-
fication” or “simplify that expression in context”. We
hope that decisions at this level will be both intuitive
to the user and be high-level enough that useful pro-
grams can be derived within a reasonable number of
steps.



The user typically goes through the following steps
in using KIDS for program development.

1. Develop a domain theory – An application domain
is modeled by a domain theory (a collection of
types, operations, laws, and inference rules). The
domain theory specifies the concepts, operations,
and relationships that characterize the applica-
tion and supports reasoning about the domain
via a deductive inference system. Our experience
has been that distributive and monotonicity laws
provide most of the laws that are needed to sup-
port design and optimization of code. KIDS has a
theory development component that supports the
automated derivation of various kinds of laws.

2. Create a specification – The user enters a problem
specification stated in terms of the underlying do-
main theory.

3. Apply a design tactic – The user selects an al-
gorithm design tactic from a menu and applies
it to a specification. Currently KIDS has tac-
tics for simple problem reduction (reducing a
specification to a library routine) [15], divide-
and-conquer [15], global search (binary search,
backtrack, branch-and-bound) [16], problem re-
duction generators (dynamic programming, gen-
eral branch-and-bound, and game-tree search al-
gorithms), and local search (hillclimbing algo-
rithms) [10].

4. Apply optimizations – The KIDS system allows
the application of optimization techniques such
as expression simplification, partial evaluation, fi-
nite differencing, case analysis, and other trans-
formations [17]. The user selects an optimization
method from a menu and applies it by pointing at
a program expression. Each of the optimization
methods are fully automatic and, with the excep-
tion of simplification (which is arbitrarily hard),
take only a few seconds.

5. Apply data type refinements – The user can select
implementations for the high-level data types in
the program. Data type refinement rules carry
out the details of constructing the implementa-
tion [4].

6. Compile – The resulting code is compiled to exe-
cutable form. In a sense, KIDS can be regarded
as a front-end to a conventional compiler.

Actually, the user is free to apply any subset of the
KIDS operations in any order – the above sequence is
typical of our experiments in algorithm design.

3 Specifying Transportation Schedul-

ing Problems

The essential notion of transportation scheduling is
that some movement requirements (e.g. bulk cargo,

passengers) are assigned to transportation assets or
resources (e.g. planes, ships, trucks) over certain time
intervals. Various constraints on the assignments must
be satisfied and certain measures of the cost or “good-
ness” of the assignment may need to be optimized.

A domain theory for transportation scheduling de-
fines the basic concepts of transportation scheduling
and the laws for reasoning about the concepts. After
a review of the relevant literature we have identified
the following general components of a transportation
scheduling domain theory.

1. Requirements – A model of the requirements can
include their internal structure and characteris-
tics, hierarchies of requirement abstractions, and
various operations on requirements.

2. Resources – A model of the resources can include
their internal structure and characteristics, hier-
archies of resource abstractions, and various op-
erations on resources.

3. Time – A time model can include a calculus of
time-points or time-intervals [1, 9].

4. Constraints – A constraint model includes the
language for stating constraints and a calculus for
reasoning about them. A constraint calculus is
used to analyze constraints and to propagate the
effects of new constraints through a given con-
straint set.

5. Objectives – Typically we seek to minimize the
cost of a schedule. Cost can be measured in terms
of time to completion, work-in-progress, total cost
of consumed resources, and so on.

6. Scheduling problem – Using the above concepts we
can formulate a variety of scheduling problems.
A reservation is a triple consisting of an require-
ment, a resource, and a time interval. Generally,
a schedule is a set of reservations that satisfy a col-
lection of constraints and optimize (or produce a
reasonably good value of) the objective.

The general components of a transportation
scheduling domain theory are specialized to TPFDD
scheduling in the following ways. Air and sea assets
are used to transport forces, supplies and replacement
personnel from a port of embarkation (POE) to port of
debarkation (POD). A typical air movement require-
ment has the following information1

1UHHZ and VRJT are geographical codes for Robins AF

Base, Georgia and Sigonella Airport, Italy, respectively.



POE : port 7→ UHHZ
POD : port 7→ V RJT
movement−type : symbol 7→ BULK
quantity : Short−Tons 7→ 2
available−to−load−date : time 7→ 0
earliest−arrival−date : time 7→ 0
latest−arrival−date : time 7→ 86400
distance : nautical−miles 7→ 5340
mode : symbol 7→ AIR

Resources are characterized by their capacities
(both passenger (PAX) and cargo capacities for each
movement type), travel rate in knots, initial port, and
date available.

As an example, one TPFDD schedules the evacu-
tion of noncombatants from a Pacific island nation.
The TPFDD for this NEO (Non-combatant Evacu-
ation Operation) has 33,291 records (movement re-
quirements for force units, non-unit related cargo and
non-unit related passengers) which generates about
12,500 air and 6,000 sea movement requirements to
be processed. The scenario includes 103 air POEs
(airports), 47 air PODs, 48 sea POEs (seaports), and
29 sea PODs. There are air movement requirements
for 1,445,511 STONs (BULK, OVERsize, and OUT-
size cargo) and 737,492 passengers, and sea move-
ment requirements for 4,902,129 MTONs (Measure-
ment TONs – a unit of volume, not weight) and
240,090 hundreds of barrels of petroleum products.
Available air resources include KC10s, C-141s, C-5s,
LRWPs, LRWCs, and sea resources include tankers
(small, medium, and large), RO-ROs, LASHs, sea
barges, containerships, and breakbulks.

Twelve constraints characterize a feasible schedule
for this problem:

1. Consistent POE and POD – The POE and POD
of each movement requirement on a given trip of
a resource must be the same.

2. Consistent Resource Class – Each resource can
handle only some movement types. For example,
a C-141 can handle bulk and oversize movements,
but not outsize movements.

3. Consistent PAX and Cargo Capacity – The ca-
pacity of each resource cannot be exceeded.

4. Consistent Initial Time – The start time of the
first trip of a transportation asset must not pre-
cede its initial available date, taking into account
any time needed to position the resource in the
appropriate POE.

5. Consistent Release Time – The start time of a
trip must not precede the available to load dates
(ALD) of any of the transported movement re-
quirements.

6. Consistent Arrival time – The finish time of a trip
must not precede the earliest arrival date (EAD)
of any of the transported movement requirements.

7. Consistent Due time – The finish time of a trip
must not be later than the latest arrival date
(LAD) of any of the transported movement re-
quirements.

8. Consistent Trip Separation – Movements sched-
uled on the same resource must start either si-
multaneously or with enough separation to allow
for return trips. The inherently disjunctive and
relative nature of this constraint makes it more
difficult to satisfy than the others.

9. Consistent Resource Use – Only the given re-
sources are used.

10. Completeness – All movement requirements must
be scheduled.

A domain theory formalizing the movement re-
quirement structure, resource models, and constraints
may be found in [20]. The problem of satisfying the
above constraints is NP-complete. This problem does
not consider certain aspects of transportation schedul-
ing, such as resource utilization rates, load/unload
rates, port characteristics, etc. We have have dealt
with most of these issues and we are continually devel-
oping more complex domain theories, specifications,
and schedulers.

4 Synthesizing a Scheduler

There are two basic approaches to computing a
schedule: local and global. Local methods focus on
individual schedules and similarity relationships be-
tween them. Once an initial schedule is obtained,
it is iteratively improved by “moving” to neighbor-
ing schedules. Repair strategies [23, 12, 3], case-based
reasoning, linear programming, and local search (hill-
climbing) are examples of local methods.

Global methods focus on sets of schedules. A feasi-
ble or optimal schedule is found by repeatedly splitting
an initial set of schedules into subsets until a feasible or
optimal schedule can be easily extracted. Backtrack,
constraint satisfaction, heuristic search, and branch-
and-bound are all examples of global methods. We
explore the application of global methods. In the
following subsections we discuss the notion of global
search abstractly and show how it can be applied to
synthesize a scheduler. Other projects taking a global
approach include ISIS [6], OPIS [21], and MicroBoss
[14] (all at CMU).

4.1 Global Search Theory

The basic idea of global search is to represent and
manipulate sets of candidate solutions. The princi-
pal operations are to extract candidate solutions from
a set and to split a set into subsets. Derived opera-
tions include various filters which are used to eliminate
sets containing no feasible or optimal solutions (e.g.
prunning and constraint propagation). Global search



algorithms work as follows: starting from an initial
set that contains all solutions to the given problem
instance, the algorithm repeatedly extracts solutions,
splits sets, and eliminates sets via filters until no sets
remain to be split. The process is often described as a
tree (or DAG) search in which a node represents a set
of candidates and an arc represents the split relation-
ship between set and subset. The filters serve to prune
off branches of the tree that cannot lead to solutions.

The sets of candidate solutions are often infinite
and even when finite they are rarely represented ex-
tensionally. Thus global search algorithms are based
on an abstract data type of intensional representa-
tions called space descriptors. In addition to the ex-
traction and splitting operations mentioned above, the
type also includes a predicate satisfies that determines
when a candidate solution is in the set denoted by a
descriptor. See [16] for a formal exposition of global
search theory.

A simple global search theory of scheduling has the
following form. Schedules are represented as maps
from resources to sequences of trips, where each trip
includes earliest-start-time, latest-start-time, port of
embarkation, port of debarkation, and manifest (set
of movement requirements). The type of schedules
has the invariant (or subtype characteristic) that for
each trip, the earliest-start-time is no later than the
latest-start-time. A partial schedule is a schedule over
a subset of the given movement records.

A set of schedules is represented by a partial sched-
ule. The split operation extends the partial sched-
ule in all possible ways. The initial set of schedules
is described by the empty partial schedule – a map
from each available resource to the empty sequence of
trips. A partial schedule is extended by first selecting a
movement record mvr to schedule, then selecting a re-
source r, and then a trip t on r (either an existing trip
or a newly created one). Finally the extended sched-
ule hasmvr added to the manifest of trip t on resource
r. The alternative ways that a partial schedule can be
extended naturally gives rise to the branching struc-
ture underlying global search algorithms. The formal
version of this global search theory of scheduling can
be found in [20].

4.2 Pruning, Cutting Constraints, and
Constraint Propagation

When a partial schedule is extended it is possible
that some problem constraints are violated in such
a way that further extension to a complete feasible
schedule is impossible. In tree search algorithms it is
crucial to detect such violations as early as possible.

4.2.1 Pruning Mechanisms

Pruning tests are derived in the following way. Let
ps be a partial schedule and let feasible(sched) be a
predicate that holds if the schedule sched satisfies the

12 problem constraints. The test

∃(sched) (sched extends ps ∧ feasible(sched)) (1)

decides whether there exist any feasible completions
of partial schedule ps. If we could decide this at each
node of our branching structure then we would have
perfect search – no deadend branches would ever be
explored. In reality it would be impossible or horri-
bly complex to compute it, so we rely instead on an
inexpensive approximation to it. In fact, if we ap-
proximate (1) by weakening it (deriving a necessary
condition of it) we obtain a sound pruning test. That
is, suppose we can derive a test Φ(ps) such that

∃(sched) (sched extends ps ∧ feasible(sched))
=⇒ Φ(ps).

By the contrapositive of this formula, if ¬Φ(ps) then
there are no feasible extensions of ps, so we can prune
ps. So our backtrack algorithm will test Φ at each
node it explores, pruning those nodes where the test
fails.

More generally, necessary conditions on the exis-
tence of feasible (or optimal) solutions below a node in
a branching structure underlie pruning in backtrack-
ing and the bounding and dominance tests of branch-
and-bound algorithms [16].

It appears that the bottleneck analysis advocated in
the constraint-directed search projects at CMU [5, 14]
leads to a semantic approximation to (1), but neither
a necessary nor sufficient condition. Such a heuris-
tic evaluation of a node is inherently fallible, but if
the approximation is close enough it can provide good
search control with relatively little backtracking.

To derive pruning tests for the strategic transporta-
tion scheduling problem, we instantiate (1) with our
definition of extends and feasible and use an infer-
ence system to derive necessary conditions. The re-
sulting tests are fairly straightforward; of the 12 orig-
inal feasibility constraints, 6 yield pruning tests on
partial schedules. For example, the partial sched-
ule must satisfy Consistent-POE, Consistent-POD,
Consistent-Pax-Resource-Capacity, Consistent-Cargo-
Resource-Capacity, Consistent-Movement-Type-and-
Resource, and Available-Resources-Used. The reader
may note that computing these tests on partial sched-
ules is rather expensive and mostly unnecessary – later
program optimization steps in KIDS will however re-
duce these tests to their nonredundant essense. For
example, the first test will reduce to checking that
when we place a movement record mvr on trip t, the
POE of mvr and t are consistent.

For details of deriving pruning mechanisms for
other problems see [16, 19, 17, 18].



Figure 1: Global Search Subspace and Cutting Constraints

4.2.2 Cutting Constraints and Constraint
Propagation

Constraint propagation is another mechanism that
is crucial for early detection of infeasibility. We de-
veloped a general mechanism for deriving constraint
propagation code and applied it to scheduling.

Each node in a backtrack search tree can be viewed
as a data structure that denotes a set of candidate
solutions – in particular the solutions that occur in
the subtree rooted at the node. Thus the root denotes
the set of all candidate solutions found in the tree.

Pruning has the effect of removing a node (set of so-
lutions) from further consideration. In contrast, con-
straint propagation has the effect of changing the data
structure at a node so that it denotes a smaller set of
candidate solutions. The basic idea underlying con-
straint propagation is cutting constraints (see Figure
1). Let r̂ be a data structure in a global search tree
(i.e. a subspace descriptor) that denotes the subspace
S = subspace(r̂ ) and let c(z, t̂) be a cutting constraint
where z is a candidate solution and t̂ an arbitrary sub-
space descriptor. We define an operation, called Cut,
that takes r̂ and c and generates a new descriptor ŝ
such that

Cut(r̂) = ŝ
⇐⇒ subspace(ŝ) = { z | z ∈ subspace(r̂ ) ∧ c(z, r̂) }

Constraint propagation is the iteration of Cut until
we reach a fixpoint Cut(̂t) = t̂ (see Figure 2).

The effect of constraint propagation is to propagate
information through the subspace descriptor resulting
in a tighter descriptor and possibly exposing infeasibil-
ity. In fact the main use for propagation in transporta-
tion scheduling is the early detection of infeasibility.
For other problems, propagation can serve to reduce
the branching factor of the search tree. Propagation
can also be used in optimization algorithms to obtain
tight lower bounds on the cost of optimal solutions in
a subspace (cf. Gomory cutting planes [13]).

The mechanism for deriving cutting constraints is
similar to (in fact a generalization of) that for deriving
pruning mechanisms. We want a necessary condition
that a candidate solution z is feasible:

∀(sched, ps) (sched extends ps ∧ feasible(sched)
=⇒ Ψ(sched, ps) )

By the contrapositive of this formula, if ¬Ψ(sched, ps)
then sched cannot be a feasible schedule that extends
ps. So we can try to incorporate Ψ into ps to obtain
a new descriptor.

The derived Cut operation has the following form,
where esti denotes the earliest-start-time for trip i and
est′

i
denotes the earliest-start-time for trip i after ap-

plying Cut (analogously, lsti denotes latest-start-time

feasible
solutions

global
search
subspace

cutting constraints



Figure 2: Pruning and Constraint Propagation

...

split

cut

cut

cut

cut

split

prune off subspace

(contains no feasible solutions)

fixpoint of the cutting process



and eadi denotes earliest-arrival-time). For each re-
source r and the ith trip on r,

est′i = max











esti,
eadi − duration(r, POEi, PODi),
esti−1 + dur(i− 1, r),
max−release−time(manifesti)

lst′i = min











lsti,
lsti+1 − dur(i, r),
min−finish−time(manifest i)

−duration(r, POEi, PODi)

Here POEi and PODi represent the ports of
embarkation and debarkation of trip i respectively;
dur(r, i) is the roundtrip time for trip i on re-
source r: dur(r, i) = duration(r, POEi, PODi) +
duration(r, PODi, POEi+1)) where
duration(r, p1, p2) is the duration from port p1 to port
p2 using resource r; max−release−time(manifest

i
)

computes the max over all of the available to load
dates, earliest arrival dates - duration(POEi, PODi)
of movement records in the manifest of trip i; also,
esti−1 is the earliest-start-time of the trip preceding
trip i, and so on. The boundary cases must be handled
appropriately.

The effect of iterating this Cut operation after
adding a new movement record to some trip will be
to shrink the 〈earliest−start−time, latest−start−time〉
window of each trip on the same resource. If the win-
dow becomes negative for any trip, then the partial
schedule is necessarily infeasible and it can be pruned.

Our model of constraint propagation generalizes the
concepts of Gomory cutting planes [13] and the forms
of propagation studied in the constraint satisfaction
literature (e.g. [7]).

4.2.3 Constraint Relaxation

Many scheduling problems are overconstrained.
Overconstrained problems are typically handled by re-
laxing the constraints. The usual method, known as
Lagrangian Relaxation [13], is to move constraints into
the objective function. This entails reformulating the
constraint so that it yields a quantitative measure of
how well it has been satisfied.

Another approach is to relax the input data just
enough that a feasible solution exists. To test this
approach, we hand-modified one version of KTS so it
relaxes the LAD (Latest Arrival Date) constraint. The
relaxation takes place only when there is no feasible
solution to the problem data. KTS keeps track of a
quantitative measure of each LAD violation (e.g. the
difference between the arrival date of a trip and the
LAD of a movement requirement in that trip). If there
is no feasible reservation for the movement require-
ment being scheduled, then KTS uses the recorded in-
formation to relax its the LAD. The relaxation is such
as to minimally delay the arrival of the requirement
to its POD.

5 Concluding Remarks

The KTS schedulers synthesized using the KIDS
program transformation system are extremely fast and
accurate. The chart in Figure 3 lists 4 TPFDD prob-
lems, and for each problem (1) the number of TPFDD
lines (each requirement line contains up to several hun-
dred fields), (2) the number of individual movement
requirements obtained from the TPFDD line (each
line can specify several individual movements require-
ments), (3) the number of movement requirements ob-
tained after splitting (some requirements are too large
to fit on a single aircraft or ship so they must be split),
(4) the cpu time to generate a complete schedule, and
(5) time spent per scheduled movement. Similar re-
sults were obtained for sea movements.

We have compared these results with other sched-
ulers. The OPIS project at CMU takes a similar
declarative approach to modeling scheduling as a con-
straint satisfaction problem. However, OPIS effec-
tively interprets its problem constraints, whereas the
transformational approach can produce highly opti-
mized “compiled” code. OPIS emphasizes complex
heuristics for guiding the search away from potential
bottlenecks. In contrast KTS uses simple depth-first
search but emphasizes the use of strong and extremely
fast pruning and constraint propagation code. OPIS
requires about 30 minutes to solve the CDART data
and it does not find a complete feasible schedule (some
latest arrival dates are relaxed). KTS finds a complete
feasible solution in 0.4 seconds – a factor of 4500 faster.

We have also compared these results with the PFE
(Prototype Feasibility Estimator), which is a Com-
monLisp re-implementation of a military feasibility
estimator called TFE (Transportation Feasibility Es-
timator). Including preprocessing time, PFE takes
about 206 seconds on the 090TP/PFE data to sched-
ule the sea movements and estimate the schedulability
of the air movements. KTS is 78% faster, taking 43
seconds to produce a detailed feasible schedule for both
air and sea movements. Furthermore the KTS sched-
ule produces 75% less delay in the sea movements and
provides a far more accurate measure of the number
of planes required for the air movements.

Our conception of the scheduling effort has evolved
in significant ways. Our 1991 demonstration sys-
tem was based on reuse of a general-purpose object
base manager and the compilation of declarative con-
straints into object base demons. We also used a Sim-
plex code to check feasibility of start-times in a gen-
erated schedule. The results were somewhat disap-
pointing in that for the 403 movement record prob-
lem (CDART), our first code couldn’t solve it run-
ning overnight, and our second code only produced
an incomplete schedule after several minutes. Since
speed is of the essence during the scheduling pro-
cess and the object base and Simplex algorithm are
problem-independent, it seemed wise to exploit our
transformational techniques to try to derive codes that
are problem-specific and highly efficient. Rather than



Data # of input # of # of scheduled Solution Msec per
Sets TPFDD individual movements after time scheduled

(Air only) records movements splitting movement

CDART 403 539 0.4 sec 1.0

CSRT01 624 1271 3120 8.3 sec 2.6

090TP/PFE 4471 6160 8085 27 sec 3.3

9002T Borneo 9480 12370 15460 71 sec 4.6

Figure 3: Scheduling Statistics

compile constraints onto an active database, we now
derive pruning mechanisms and constraint propaga-
tion code operating on problem-specific data struc-
tures. Rather than use a Simplex algorithm for finding
feasible start-times, the constraint propagation code
maintains feasible start-times throughout the schedul-
ing process. The result is that KTS finds a complete
feasible solution to the CDART problem in 0.4 sec-
onds.

In summary, there are several advantages to a
transformational approach to scheduling. The first is
based on the observation that there is no one schedul-
ing problem. Instead there are families of related
problems. The problems can differ in the mix of con-
straints to satisfy, cost objectives to minimize, and
preferences to take into account. In this paper we
have mainly treated the problem of finding a feasible
detailed schedule. Another kind of problem is to find
an estimate of the resources needed to bring about
a desired completion date. Another kind of problem
is to work backwards from a given completion date to
feasible start dates for individual movements. Another
kind of problem is incremental or reactive scheduling.
We believe that transformation systems such as KIDS
will provide the most economical means for generating
such families of schedulers. We have observed a great
deal of reuse of concepts and laws from the underlying
domain theory and of the programming knowledge in
the transformations.

A second advantage is the reuse of best-practice
programming knowledge. The systematic develop-
ment of global search algorithms has helped us exploit
problem structure in ways that other projects some-
times overlook. The surprising efficiency of KTS stems
from two sources. First, the derived pruning and prop-
agation tests are surprisingly strong. The stronger the
test, the smaller the size of the runtime search tree.
In fact, on many of the TPFDD problems we’ve tried
so far, KTS finds a complete feasible schedule without
backtracking! The pruning and propagation tests are
derived as necessary conditions on feasibility, but they

are so strong as to be virtually sufficient conditions.
The second reason for KTS’ efficiency is the special-
ized representation of the problem constraints and the
development of specialized and highly optimized con-
straint operations. The result is that KTS explores
the runtime search tree at a rate of several hundred
thousand nodes per second, almost all of which are
quickly eliminated.

Acknowledgements

This research was supported by DARPA/Rome
Laboratories Contract F30602-91-C-0043 and also by
the Office of Naval Research under Contract N00014-
90-J-1733 and the Air Force Office of Scientific Re-
search under Contract F49620-91-C-0073.

References

[1] Allen, J. F. Maintaining knowledge about tem-
poral intervals. Communications of the ACM 26,
11 (November 1983), 832–843.

[2] Applegate, D., and Cook, W. A computa-
tional study of the job-shop scheduling problem.
ORSA Journal on Computing 3, 2 (Spring 1991
1991), 149–156.

[3] Biefeld, E., and Cooper, L. Operations mis-
sion planner. Tech. Rep. JPL 90-16, Jet Propul-
sion Laboratory, March 1990.

[4] Blaine, L., and Goldberg, A. DTRE – a
semi-automatic transformation system. In Con-
structing Programs from Specifications, B. Möller,
Ed. North-Holland, Amsterdam, 1991, pp. 165–
204.

[5] Fox, M. S., Sadeh, N., and Baykan, C. Con-
strained heuristic search. In Proceedings of the



Eleventh International Joint Conference on Ar-
tificial Intelligence (Detroit, MI, August 20–25,
1989), pp. 309–315.

[6] Fox, M. S., and Smith, S. F. ISIS – a
knowledge-based system for factory scheduling.
Expert Systems 1, 1 (July 1984), 25–49.

[7] Hentenryck, P. V. Constraint Satisfaction in
Logic Programming. Massachusetts Institute of
Technology, Cambridge, MA, 1989.

[8] John Schank. et. al. A Review of Strategic
Mobility Models and Analysis. Rand Corporation,
Santa Monica, CA, 1991.

[9] Ladkin, P. Specification of time dependencies
and synthesis of concurrent processes. In 9th
International Conference on Software Engineer-
ing (Monterey, CA, March 30–April 2, 1987),
pp. 106–116. Technical Report KES.U.87.1,
Kestrel Institute, March 1987.

[10] Lowry, M. R. Automating the design of
local search algorithms. In Automating Soft-
ware Design, M. Lowry and R. McCartney, Eds.
AAAI/MIT Press, Menlo Park, 1991, pp. 515–
546.

[11] Luenberger, D. G. Linear and Nonlinear Pro-
gramming. Addison-Wesley Publishing Company,
Inc., Reading, MA, 1989.

[12] Minton, S., and Philips, A. B. Applying a
heuristic repair method to the HST scheduling
problem. In Proceedings of the Workshop on In-
novative Approaches to Planning, Scheduling and
Control (San Diego, CA, November 5–8, 1990),
DARPA, pp. 215–219.

[13] Nemhauser, G. L., and Wolsey, L. A. Inte-
ger and Combinatorial Optimization. John Wiley
& Sons, Inc., New York, 1988.

[14] Sadeh, N. Look-ahead techniques for micro-
opportunistic job shop scheduling. Tech. Rep.
CMU-CS-91-102, Carenegie-Mellon University,
March 1991.

[15] Smith, D. R. Top-down synthesis of divide-and-
conquer algorithms. Artificial Intelligence 27, 1
(September 1985), 43–96. (Reprinted in Readings
in Artificial Intelligence and Software Engineer-
ing, C. Rich and R. Waters, Eds., Los Altos, CA,
Morgan Kaufmann, 1986.).

[16] Smith, D. R. Structure and design of global
search algorithms. Tech. Rep. KES.U.87.12,
Kestrel Institute, November 1987.

[17] Smith, D. R. KIDS – a semi-automatic pro-
gram development system. IEEE Transactions
on Software Engineering Special Issue on Formal
Methods in Software Engineering 16, 9 (Septem-
ber 1990), 1024–1043.

[18] Smith, D. R., and Lowry, M. R. Algorithm
theories and design tactics. Science of Computer
Programming 14, 2-3 (October 1990), 305–321.

[19] Smith, D. R. KIDS: A knowledge-based soft-
ware development system. In Automating Soft-
ware Design, M. Lowry and R. McCartney, Eds.
MIT Press, Menlo Park, 1991, pp. 483–514.

[20] Smith, D. R. Transformational approach to
scheduling. Tech. Rep. KES.U.92.2, Kestrel In-
stitute, November 1992.

[21] Smith, S. F. The OPIS framework for modeling
manufacturing systems. Tech. Rep. CMU-RI-TR-
89-30, The Robotics Institute, Carenegie-Mellon
University, December 1989.

[22] Smith, S. F., Fox, M. S., and Ow, P. S.
Constructing and maintaining detailed produc-
tion plans: Investigations into the development
of knowledge-based factory scheduling systems.
AI Magazine 7, 4 (Fall 1986), 45–61.

[23] Zweben, M., Deale, M., and Gargan, R.
Anytime rescheduling. In Proceedings of the
Workshop on Innovative Approaches to Planning,
Scheduling and Control (San Diego, CA, Novem-
ber 5–8, 1990), DARPA, pp. 215–219.


