
Random Trees and the Analysis of Branch and Bound
Procedures

D O U G L A S R. SMITH

Office of Naval Research, Arlmgton, Vzrgtma

Abstract. Branch and bound procedures are the most efficient known means for solving many NP-hard
problems A special class of branch and bound procedures called relaxation-gutded procedures ig
presented. While for some branch and bound procedures a worst-case complexity bound is known, the
average case complexity is usually unknown, despite the fact that it may g~ve more useful information
about the performance of the algorithm. A random process which generates labeled trees is introduced
as a model of the kind of trees that a relaxatlon-gutded procedure generates over random instances of a
problem Results concerning the expected time and space complexity of searching these random trees
are derived with respect to several search strategies. The best-bound search strategy is shown to be
optimal in both time and space. These results are illustrated by data from random traveling salesman
instances Evidence ~s presented that the asymmetric traveling salesman problem can be solved exactly
in time O(n31n(n)) on the average.

Categories and Subject Descnptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
mencal Algorithms and Problems, G.2.1 [Discrete Mathematics]: Combinatorics; G.I.6 [Numerical
Analysis]. OpUmlzatlon

General Terms: Algorithms, Theory

Addlttonal Key Words and Phrases' Dtscrete opttmtzation, branch and bound procedures, random
processes, average case analysis of algorithms, search strategies, traveling salesman problem

1. Introduction
A discrete minimization problem H is a triple H = (S, D, f) where S is a discrete
set of objects called feasible solutions, D is a set of input instances, and f: S × D

Z ÷ (positive integers) is a cost function. An instance of II has the form
(S', d, f) where S' C_ S and d E D. ($1, d, f) is a subinstance of (So, d, f) if
$1 _c So. When no confusion can arise we will identify an instance by S' , its set of
feasible solutions. An optimal solution to an instance S' is an object x ~ S' which
has minimal cost; that is, for all y E S' fix, d) <_ f(y, d). The goal is to find an
optimal solution to a given instance of II. The basic branch and bound procedure
works as follows. An instance of a problem H is analyzed, and if the minimal-cost
object is not easily extracted, then the instance is decomposed into subinstances
and a lower bound is computed on the cost of the minimal-cost object in each
subinstance. Those subinstances whose bound exceeds the cost of some known
(perhaps nonoptimal) solution can be discarded since they cannot contain an
optimal solution. The remaining subinstances are repeatedly analyzed, decom-
posed, and bounded until an object is found whose cost does not exceed the bound

This work was supported m part by NSF grant MC74-14445-AO 1.
Author's address: Office of Naval Research, Code 433, InformaUon Sciences Division, Room 631,800
N. Quincy Street, Arhngton, VA. 22217.
Permission to copy without fee all or part of th~s material is granted provided that the copies are not
made or d~stnbuted for d~rect commercial advantage, the ACM copyright notice and the title of the
pubhcation and its date appear, and noUce is gwen that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
© 1984 ACM 0004-5411/84/0100-0163 $00.75

Journal of the Assoclauon for Computing Machinery, Vol 31, No 1, January 1984, pp 163-188

164 DOUGLAS R. SMITH

on any subinstance, hence that object is an optimal solution. The search process
generated by a branch and bound procedure is often represented by a tree in which
instances are represented by nodes, and the decomposition of instance S,
into subinstances is represented by arcs from the node representing S, to each
subinstance.

Branch and bound seems to have emerged as the principal method for solving
discrete minimization problems which are classified as NP-hard [6]. Theoretical
treatments of branch and bound procedures may be found in [2], [14-16], [22],
[25], [31], and [33]. Just a few of the applications of the branch and bound method
include integer programming [8], flow shop and job shop sequencing [17], traveling
salesman problems [3, 4], knapsack problems [9, 13], puzzles and other cognitive
tasks [32], optimal decision tress [30], and pattern recognition [18].

In this paper we focus on a class of branch and bound procedures which we call
relaxation guided. A relaxation of a discrete minimization problem II = (S, D, f)
is a problem II ' = (T, D, g) where S _ T, and for all x ~ S and d E D fix, d) =
g(x, d). Each instance S, of II corresponds to a unique instance T, of II ' such that
S n T, --- S,. T~ is called the relaxed instance with respect to S,. A relaxation-guided
procedure makes use of a fast algorithm for solving II ' . If an optimal solution z to
a relaxed instance T, is also feasible (z E Si), then z is also an optimal solution to
instance S,. If z is not feasible, then it is used to decompose T, into subinstances
in such a way that z is precluded from further consideration. A few of the problems
for which relaxation-guided algorithms have been devised are the symmetric and
asymmetric traveling salesman problems [4, I I, 12, 37], the integer linear program-
ming [8], quadratic assignment [24], set covering [27], and knapsack problems
[131.

The complexity of an algorithm has usually been measured by its worst-case
behavior over all instances of a problem (i.e., an upper bound on its performance).
The obvious problem with such a' measure is that it gives little information about
the usual or average performance of the algorithm. For example, Klee and Minty
[20] construct some examples which cause the simplex algorithm for solving linear
programs to run in exponential time, yet its usual performance is so good that it is
one of the most widely used computer algorithms. It is especially true of branch
and bound proceduresmwhich can have widely varying behaviors over the set of
instances of a p r o b l e m l t h a t the average case complexity gives more useful
information than a worst-case measure about the performance of the algorithm.

In this paper we use a random process similar to a branching process [10] in
order to model the kinds of trees generated by a branch and bound procedure. The
model enables us to derive several results on the expected time and space complexity
of branch and bound procedures under best-bound-first and depth-first search
strategies. With these results a model of a subtour-elimination algorithm for the
traveling salesman is constructed, and empirical performance data are compared
with values predicted by the model.

Section 2 discusses the branch and bound procedure. In Section 3 our model of
branch and bound search trees is introduced and properties of the model trees are
derived. Sections 4 and 5 develop results on the complexity of best-bound-first,
depth-first, and general search strategies. Also in Section 5, the expected time
complexity of a depth-first search is studied as a function of the depth of the first
solution found in the search tree. A subtour-elimination algorithm for the traveling
salesman problem is modeled in Section 6, and evidence is provided that it has an
expected running time of O(n31n(n)).

Random Trees and Branch and Bound Procedures 165

2. Branch and Bound Procedures

A branch and bound procedure has three major components. A branching function
B is a rule determining if and how a given instance is to be decomposed into
subinstances. In a relaxation-guided branch and bound procedure B uses an
algorithm A which finds solutions to the relaxed instances; that is, A: 2 r ~ T such
that for any T, C T and for all y E 7", f(A(T,), d) <_ f(y, d). Formally B is a mapping
from subinstances of T to a collection of subinstances of T (B: 2r---~ 22r) such that

(1) ifA(T,) ~ S or 7", is a singleton, then B(T,) is the empty set (i.e., no instances
are produced);

(2) otherwise, if A(T,) q! S, then B(T,) = {T,t, T,2 T, kt where
(a) U~=, T U C T,,
(b) ,,k,_,j=l = --- Su = S,, and where 7", N S S, and T,j n S S~j,
(c) A(T,) ~ Ok=, T U.

The second component of a branch and bound procedure is a lower bound
functlon (LB) which maps subinstances of T into nonnegative integers. For any
instance (T,, d, f) define

{)c(if 7", is the empty set
LB(T,, d) = A(T,), d) otherwise.

The following properties are satisfied by this definition of LB:

(1) LB(T,, d) _ f(s, d) for all s ~ S, = T, N S, since A(T,) is a least-cost object
in 7",;

(2) LB(T,, d) ___ LB(Tv, d) if Tv E B(T,), since Tu C T,;
(3) ifA(T,) E S, then A(T,) is the minimal-cost object in S, = T, n S.

When A(7;) E S, the branching function does not decompose the instance, precisely
because an optimal solution of the instance has been found. In practice there may
be ways to further improve the lower bound beyond the simple approach given
above. See, for example, [12] and [37].

The lower bound function is used to eliminate from consideration those sub-
instances of T which can be shown not to contain an optimal solution to the
original instance. If it is known that the optimal solution has a cost of at most q,
then any instance 7", for which LB(T,, d) > q cannot yield an optimal solution.
An instance is said to have been explored if it has been terminated by this bounding
test or if the branching function has been applied to it. An instance which has been
generated by the branching function, but not yet explored at some point during a
computation, is said to be active.

The third component of a branch and bound procedure is a search strategy,
which is a rule for choosing to which of the currently active instances of S the
branching rule should be applied. For conceptual simplicity and uniformity of
notation, a search strategy will be realized here by a heuristic function h: 2 r---}
priority, where priority is a linearly ordered set which depends on the particular
search strategy. Of those instances waiting to be explored via the branching rule
we choose that instance 7", with the smallest heuristic value h(T,).

A relaxation-guided branch and bound procedure for finding a single least-cost
object is given below in a Pascal-like language. The principal data structure is a
priority queue which stores instances with an associated priority given by the
heuristic function h. The queue is accessible only by the following three operators:
NONEMPTY, which returns true if and only if the priority queue is nonempty;

166 DOUGLAS R. SMITH

SELECT, which removes and returns the instance in the priority queue with
smallest heuristic value; and INSERT, which inserts an instance into the priority
queue with its associated heuristic value. Efficient algorithms for priority queues
are discussed in [1].

The code assumes the user-defined data types instance (representation of relaxed
problem instances); solutiontype (representation of T), priority (representation of
priorities); and priority queue (representations for priority queues). In addition, the
following generic functions are employed:

A: instance ---, solutiontype (A finds solutions to relaxed instances);
LB: instance --> integer (LB computes the lower bound function);
FEASIBLE: solutiontype --, boolean (FEASIBLE distinguishes elements of S from
elements of T - S).

function BB(N: mstance, UB: integer): solutiontype;
var

i, j: integer;
solution: solutiontype;
PQ: prtority queue;

begin
1 if FEASIBLE(A(N)) then return(A(N));
2 INSERT(N, PQ, h(N));
3 while NONEMPTY(PQ) do /* while there are active instances... */
4 begin N := SELECT(PQ); /* find instance with least heuristic value */
5 if LB(N) < UB /* and explore i t . . . */
6 then if FEASIBLE(A(N)) /* if relaxed solution is feasible... */

then begin /* then save it */
7 UB := LB(N); solution := A(N)

end
else begin /* otherwise apply the branching rule... */

8 Apply branching rule to N generating subinstances Nj, N2 Nk;
9 for i :----- 1 to k do /* and store the subinstances */

10 INSERT(N,, PQ, h(N,))
end

end;
11 return(solution)
end

The procedure BB is typically invoked with T and oo as arguments where oo is
an upper bound on the cost of any object in T. The variable UB serves-to record
the cost of the least-cost feasible object currently known during the search process.
An obvious improvement of BB is to check that LB(N,) < UB in statement 10,
before the instance N, is inserted in the priority queue. While such a test will
improve the performance of BB somewhat in practice, we omit it here for the sake
of simplifying our analysis of the behavior of BB. Its inclusion would not affect
our order of magnitude results on the time complexity of branch and bound search,
but would have the effect of lowering the space complexity somewhat. In practice
several other enhancements of the pruning power of BB may be added to this code,
but they depend on the special structure of a particular problem. A dominance
relation [15, 16, 22] is a relation on subinstances of Tsuch that if T, dominates Tj,
then Tj cannot contain a better solution than T,, so T~ can be eliminated from
further consideration. An equivalence test [16] is based on an equivalence relation
over subinstances of T. In many applications the branching structure generated by
BB is a graph; a well-chosen equivalence test between nodes can eliminate much
redundant search.

Random Trees and Branch and Bound Procedures 167

The best-bound-first (bbf) search strategy [5, 25] chooses to apply the branching
rule to that active instance with the smallest lower bound. This strategy is realized
by the heuristic function

h(T,) = LB(T,)

where LB is the lower-bound function. The relation ---h is just the usual relation _<
on the integers. In practice a priority queue is indeed the appropriate data structure
for implementing a best-bound-first search. Also, in practice ties will be broken in
favor of deeper nodes in the search tree since, in general, it represents a more
tightly constrained instance and may be closer to producing a relaxed solution that
is feasible.

The ordered-depth-first (odf) search strategy applies the branching rule to the
least cost of the most recently generated instances, and may be realized by

h(T,) = (d(T,), LB(T,))

where d(T,) --- depth of the instance T, in the tree generated by BB and the range
of h is the set of ordered pairs of integers. The generation-order-depth-first (godf)
search strategy applies the branching rule to the first generated of the most recently
generated instances and can be realized by

h(T,) = (d(T,), i)

for the ith generated instance. Again, h produces an ordered pair. For both of these
heuristic functions we define (a, b) -<h (c, d) if and only if a > c or (a -- c and
b_< d).

The breadth-first search strategies are another well-known class of search strate-
gies which are, however, rarely used in relaxation-guided branch and bound
procedures. Under a breadth-first search strategy all instances generated at depth
i ___ 0 are explored before the subinstances they generate at depth i + 1.

As an example of a relaxation-guided branch and bound procedure we will
consider a subtour-elimination algorithm for solving the traveling salesman prob-
lem (TSP). An n-city TSP can be described as follows: TSPn = (Cn, D, f) where
Cn is the set of cyclic permutations of {l, 2, 3 n}, D is the set of positive
integral n x n matrices, and

f(~r, d) = Y, d(i, 7r,) for all 7r E Cn, d ~ D.
Iml

The well-known assignment problem is used as the relaxation of the traveling
salesman problem. An assignment problem of order n may be described by
ASSIGN~ = (S,, D, f) where D and f a r e as defined above, and Sn is the set of
permutations of {l, 2 , n}. The assignment problem is solvable in O(n 3) time
for an initial instance and O(n 2) for subsequent modified instances [4] and [26].

Subtour-elimination algorithms differ mainly in their choice of branching rule.
The following branching rule was proposed by Shapiro [34]: Given cost matrix d,
solve the assignment problem with respect to d. If the least-cost solution, ~r, is
cyclic, then we have extracted the least-cost cyclic permutation over the feasible
set of d, so there is no need to branch. If ~r is noncyclic, then pick one of its
subcycles, say the smallest, and let this cycle be denoted (/1, /2 ik). In an
optimal cost cyclic permutation at least one of the nodes in this cycle must be
directed outside the cycle, since the subcycle cannot be a part of a eyelie permuta-
tion. The instance is decomposed as follows: In the j th subinstance the node i~ is

168 DOUGLAS R. SMITH

forced to connect to a node not in the cycle (it,/2 , ik) by setting the matrix
entries d,/m = oo for 1 <_ m _< k. Throughout this paper we use the symbol oo to
denote a number which is sufficiently large in context to be effectively infinite.
Variations on this branching rule are given in [3], [7], and [37].

3. A Model of Branch and Bound Search Trees

3.1 RANDOM INSTANCES AND RANDOM TREES. It was noted previously that the
branch and bound process generates a tree structure. In this section we use this
abstraction to define a probabilistic model of the kind of tree structures that BB
generates over the instances of a discrete minimization problem. Within this model
we can derive various results concerning the expected time and space requirements
of BB under various search strategies.

The collection of subinstances of T that are inserted in the priority queue during
the execution of BB is called the search tree; the time complexity of a branch and
bound search will be measured by the size of the search tree. The space complexity
will be measured by the maximum number of instances in the queue at any time
during the search. The time and space complexities of a given search by BB under
search strategy h, given an initial bound of b, will sometimes be denoted by the
variables Nr(b) and Ns(b), respectively. When appropriately defined the expected
value of Nr and Ns will be denoted Eh(Nr(b)) and Eh(Ns(b)). When the initial
bound is oo, we will simply write Nr and Ns in place of Nr(oo) and Ns(oO). This
definition of time complexity does not include the amount of time spent executing
the branching rule or inserting nodes in the queue. We assume that these times are
relatively independent of the choice of branching function, so they should factor
out of the comparison of the different search strategies, leaving the size of the
search tree as the essential measure of performance.

The question of interest is how to model the behavior of BB on a random
instance of a problem, apart from the details of the problem. That is, which features
of a branch and bound search are relevant to branch and bound and which are
problem dependent? First, by the action of the branching rule a tree structure is
generated so that BB is a tree searching algorithm. Second, the lower bound
function of BB associates a number with each node in this tree. The search strategy
does not affect the tree per se, but only the order in which the algorithm examines
the tree. So a tree with costs associated with each node is another way of representing
the domain of BB. In this setting the goal of BB is to find the least-cost leaf of the
tree. These considerations are formalized in the following definition. An arc-labeled
tree is a tree t = (N, A, C) where N is a set of nodes, A is a set of arcs, and C: A --->
Z + (positive integers) is a cost function on the arcs of the tree. (For example, see
Figure 1.) In an arc-labeled tree the cost of a node is defined to be the sum of the
costs on the arcs on the path from the root to the node. The cost of the root is
zero.

The next step is to map the notion of a random instance of given size into the
arc-labeled tree domain. A probability function is assigned to the class of arc-
labeled trees which should somehow correspond with a probability measure on the
instances of a discrete minimization problem. Our model of this mapping is to
regard the generation of a tree as a random process in which each application of
the branching rule is replaced by an independent random experiment where the
outcome is the number of sons that a node has. In a similar manner, the assignment
of a cost to a node is treated as the outcome of a different independent random

Random Trees and Branch and Bound Procedures

~¢/ _ ~1~,~ _ FIG. 1. An arc-labeled tree.

169

experiment. Formally, let P and Q be probability mass functions. The mean of P
will be written P. It is assumed that P and Q satisfy the following properties:

(1) P(0) > 0 (a node is terminal with nonzero probability),
(2) Q(0) = 0 (an arc has cost zero with probability zero).

Let RANDOM(F) be a random function which returns k with probability F(k).
The following procedure generates a random arc-labeled tree.

(1) Let a root node exist. The root is unsprouted.
(2) Select an unsprouted node n (according to some search strategy) and sprout it

as follows: Let n have RANDOM(P) sons. For each arc from n to its sons, label
the arc with cost RANDOM(Q)•

(3) Repeat step 2 until all nodes have been sprouted.

This dynamic means of defining a random arc-labeled tree is easily implemented
on a machine for experimental purposes. This process is related to the well-known
branching process [10], which has applications to population growth, nuclear fission
reactions, and particle cascades.

We need to define a probability function on the set of arc-labeled trees. This can
be accomplished as follows. The generation of a tree is viewed as a sequence of
trials, where each sprouting of step 2 in the above procedure is a trial. Le t j denote
the number of sons generated in a random trial and let c~, c2 , c: denote the arc
costs assigned to the arcs. The probability of the outcome of a trial then is
P (j) Q (c l) O (c 2) . . . O(cj) . Clearly, if we sum over all possible outcomes of a trial,
the probabilities sum to 1,

o0 co oo

~'. P(n) ~ Q(c0 . . . ~ Q(c~)= 1.
n = O C I = I cj=l

We can formulate the probability of a tree generated by this process as follows.
Consider the probabilities of the outcomes of the trials during the generation
of a tree in a sequence (go, gl, g2, . . .), where g, is the probability of the par-
ticular outcome of the ith trial. Let us call the product gog~ . . . g, the ith partial
probability of the randomly generated tree. The probability of a randomly gener-
ated tree then is the limit as i goes to infinity of the ith partial probability.
For example, the probability of the arc-labeled tree in Figure 1 is P(2)Q(I)Q(2)
• P(O)P(3)Q(3)Q(5)Q(7)P(O)P(O)P(O).

Let sons(n) denote the number of sons of the node n. The arc-labeled tree t ---
(N, A, C) is in the class of (P, Q)-random trees if and only if (sons(n)) > 0 for all n

N and Q(C(a)) > 0 for all a E A. We will omit the prefix (P, Q) and call t a
random tree when P and Q are clear from context.

The key simplifying assumption in this model is the independence of each
application of the branching rule and the independence of each assignment of arc
costs. The mdependence assumptions will not hold exactly in branch and bound
applications. Many branch and bound algorithms are not relaxation guided and
find their solutions at a fixed depth k. In these algorithms the opportunity of

170 DOUGLAS R. SM1TH

finding an optimal solution at an intermediate depth d < k is precluded and, thus,
they are not well modeled by a depth-independent P. In general the branching and
arc cost probabilities are dependent on many factors, some of them problem
dependent. A more sophisticated problem-independent model might include the
depth of a node as a parameter in P and Q. Alternatively, one might include as
parameters the number of siblings of a node and the cost of the arc to its parent,
thus modeling the branching rule and arc cost assignment by the state transition
probabilities of a Markov process.

The key strength of the model is that it allows a tractable and general analysis of
the expected performance of branch and bound under several search strategies. We
claim that the model is useful in analyzing relaxation-guided branch and bound
procedures and we provide an example in Section 6. More broadly, the indepen-
dence assumptions may play a role in understanding the asymptotic properties of
general branch and bound procedures. In many branch and bound applications
each branching corresponds to the imposition of some constraints on a small
number of variables in a parent instance. If the average number of variables affected
by a decomposition is asymptotically negligible in comparison to the total number
of variables in the problem, then we might expect that as the problem size increases
the statistical properties of the child instance become more and more like the
statistical properties of the parent instance. In the limit we may have statistical
independence. In addition, for sufficiently large trees the branch and bound process
examines only the topmost part of the full tree, which may have much more
uniform properties than the tree as a whole. We present evidence in Section 6 that
the trees produced by the branching function of a subtour-elimination algorithm
from the traveling salesman problem do have a degree of uniformity in the
probability of various branching factors. This uniformity can be exploited in the
asymptotic analysis and and derivation of bounds on the expected running time of
subtour-elimination algorithms.

3.2 PROPERTIES OF A CLASS OF (P, Q)-RANDOM TREES. Before studying the
behavior of BB it will be useful to develop expressions for some important properties
of a class of random trees. For example, what is the expected path length of a
randomly picked path in a random tree? The probability that a node is a leaf is
P(0) and the probability that a node has some sons is 1 - P(0). A branch of length
k then has probability (1 - P(o))k/°(O), a geometric distribution. The expected path
length is

oo

Y, k(l - P(0))kp(0) = (1 -- P(0))/P(0). (3.1)
k,=O

A more difficult question concerns the distribution of least-cost leaves over the
class of random trees. Let lcl(t) denote the cost of a least-cost leaf in an arc-labeled
tree t. Let O(i) denote the probability that lcl(t) = i in a random tree t. 0 is defined
on the nonnegative integers, since the cost of any leaf in a random tree is a
nonnegative integer by definition. A recurrence relation for 0 can be formulated
by equating two expressions for the probability that lcl(t) > i in a random tree t.
First note that no arcs can have a cost of zero, so the only way that a tree can have
a least-cost leaf of cost zero is if the root is terminal, thus 0(0) = /9(0). One
expression for the probability that lcl(t) > i is

1 - ~ O(k). (3.2)
k=O

Random Trees and Branch and Bound Procedures

C2

(a)

FIG. 2. (a) A t ree top. (b) A branch .

c I

A
(b)

171

Next consider the treetop shown in Figure 2a. The subtrees h, tz tj are
themselves random trees. The probability that lcl(tk) > i where & is the kth subtree
plus the arc from the root as in Figure 2b is

1 - i ~ Q(c)O(s - c). (3.3)
S=I c'~!

This expression sums over all combinations of arc costs c and costs of least-cost
leaves within t (letting s denote the least-cost leaf of the combined arc and subtree,
s - c is the cost of the least-cost leaf of the subtree) for which the sum is not greater
than i. Since this expression applies independently to each of any number of
branches, the probability that the treetop of Figure 2a has j branches and lel(t) > i
is

P(j) 1 - Q(c)O(s - c) .
s'~l c ~ l

For i > 0 the probability that lcl(t) > i in a random tree t is

Y~ P(j) 1 - Q(c)O(s - c) . (3.4)
J~ l S~I c~l

The case j -- 0 is not included in this expression because then lcl(t) = 0. Finally,
expressions (3.2) and (3.4) can be equated:

l - O(k) = • P (j) 1 - Q (c) O (s - c) . (3.5)
k=0 J~ l s,=l c~l

This is a recurrence relation since O(i) appears on the left but only the values 010),
0I I) 0(i - 1) appear on the right for i _> 1. In Appendix A this recurrence
relation is broken down into simpler recurrence relations in order to speed up the
computation of O. Except for special P and Q, this recurrence relation seems to
have no general analytic solution. Extrapolation of 0 based on uniformly distrib-
uted P and Q suggests that O(n) is asymptotic to d" for some constant d that
depends on P and Q. Figure 3 shows some of 0 for the class of (Pip, Qi0o)-trees
where PMk) = 1/11 i f0 _ k _ 10 and Pl0(k) - 0 otherwise, and Qloo(c) = 1/100
if 1 _< c -< 100 and 0 otherwise. Other properties of random trees, such as the
probability that the shallowest least-cost leaf in a random tree occurs at depth k,
are given in [36].

4. Best-Bound-First and Heuristic Search Strategies

Let no, n~, n2 ... denote the sequence of nodes explored in a tree by BB under a
heuristic search strategy h. n, is called thefirst-found leaf if no node ni with j < i is

172

.O9

.012
.009
.006
.003

DOUGLAS R. SMITH

I
8 (o) . . .

..... : i i i i i : : •
v

0 I0 20 30 40 50 60 70 80 90 I00
i

FIG. 3. O(i) for (P,o, Qi0o)-trees.

a leaf. The first-found leaf corresponds to the first feasible solution explored during
a branch and bound search and has the effect of changing UB so that pruning can
take place of subsequently explored nodes whose cost exceeds UB.

PROPOSITION 4.1. I f nk is the first-found leaf in a best-bound-first search o f an
arc-labeled tree t, then nk is the least-cost leaf in t.

PROOF. A best-bound-first search explores the nodes of a tree t in order of
nondecreasing cost. Let s be any leaf. At the moment that the first leaf node s* is
found, some ancestor of s is on the priority queue and has cost no less than the
cost of s*. Since costs are nondecreasing as we proceed down any path in an arc-
labeled tree, s must have cost no less than the cost of s*. Thus, s* has minimal
cost. Q.E.D.

As a consequence of Proposition 4.1 we can slightly modify a best-bound-first
implementation of BB so that it terminates as soon as a leaf (representing a feasible
solution) is found. With this proposition we can derive an expression for the
expected time and space complexity of BB under a best-bound-first search strategy.

THEOREM 4.1. Over a class of(P, Q)-random trees the expected ttme and space
complexities o f BB under the best-bound-first search strategy is given by

p
Ebbf(NT) = 1 + - 1(o)

P - 1
Eb¥(Ns) = 2 + P(O----T"

PROOF. Let x, be a random variable whose value is the number of children of
n,, the ith explored node. The number of nodes inserted in the priority queue prior
to the exploration of the first-found leaf is a random sum of the form

1 + Xo + x~ + . . . + Xk-~ (4.1)
where nk is the first-found leaf. The first term in (4.1) counts the insertion of the
root into the priority queue. The remaining terms count the children of each
explored node prior to the first-found leaf. If nk is the first-found leaf, then the
space complexity is measured by

max 1 + (x j - 1) = 1 + Y~ (x j - 1) (4.2)
0 "~t<k J=O j~O

since xj ___ 1. The first term counts the insertion of the root into the priority queue
and the j th term, (x~ - 1), in (4.2) counts the children added to the queue by nj
and the removal of nj itself from the queue. Each sum, (4.1) and (4.2), is a random
sum of independently and identically distributed random variables whose mean is

Random Trees and Branch and Bound Procedures 173

simply the product of the expected number of terms and the expected value of a
term. The probability that the first-found leaf is nk is (1 -- P(0))kp(0) which has
mean

c o

k(l - P(o))kp(o) = 1 - P(O) (4.3)
k=O P(0)

The probability that xj has value m given that m > 0 is P(m)/(l - P(0)) which has
mean

mP(m) P
m~=t 1 Z ~--0) = 1 - P(O)" (4.4)

Taking the product of (4.3) and (4.4) and adding one for the root gives us the
expected value of (4.1)

P l -- P(O) P
1 + 1 - - " ~ 0) P(O--~ = 1 + P(O)" (4 .5)

The expected value of the random variable (xj - 1) in (4.2) is

Y~7~=I (m - 1)P(m) _ Y.7~=l mP(m) -]~7,-, P(m)
1 - P (0) 1 - P (0)

P - (l -- P(O))
= 1 -- P(O) (4.6)

Adding 1 for the root to the product of (4.3) and (4.6) gives us the expected value
of(4.2)

/ 5 _ (1 - P(0)) 1 - P(0) (/~ - 1)
1 + 1 - P(0) P(0) = 2 + P(0-------~ Q.E.D. (4.7)

COROLLARY 4.1. For any search strategy h, the expected time and space com-
plexities of BB on a random tree have the following bounds:

P
Eh(N~) >_ I + -

P(O)

(P - l)
Eh(Ns) >- 2 + P(O)

PROOF. Under any search strategy h, BB cannot terminate until at least one
leaf has been removed from the priority queue. Thus Nr is bounded below by the
number of nodes inserted in the priority queue prior to the exploration of the first-
found leaf. This quantity is just (4.1) which has mean (4.5). Similarly Ns is bounded
below by the number of nodes in the priority queue just prior to the removal of
the first-found leaf. This quantity is measured by (4.2) and has mean (4.7). Q.E.D.

Theorem 4.1 and its corollary provide us with several interesting conclusions.
First, the best-bound-first search strategy is optimal in the sense that its average-
case performance is no worse than that of any other search strategy. Second,
Theorem 4.1 indicates that in the construction of an efficient relaxation-guided
branch and bound procedure we should seek to minimize the expected branching
factor and maximize the chance that an optimal solution to a relaxed instance is
also feasible. Third, only the relative ordering of the costs of the nodes in a tree are

174 DOUGLAS R. SMITH

important to a best-bound-first search, not the particular costs, thus (4.5) and (4.7)
are independent of Q.

The absence of Q in (4.5) means that the performance change in BB due to
replacing one lower-bound function with another cannot be modeled by simply
varying Q. Instead, new P and Q functions are needed which more closely model
the search trees produced by BB (as opposed to modeling the full trees determined
by the branching and lower-bound functions). If the search trees produced by BB,
using a new lower-bound function, are smaller, it is because the first-found leaf is
found sooner in the search. Thus P(0) is higher, and/or fewer nodes are generated
by the branching function, thus P is lower. So it is possible to capture the effect of
different lower-bound functions if one is willing to adopt the more sophisticated
approach ,of attempting to model the search trees produced by BB.

5. Depth-First Search Strategies

5.1 EXPECTED TIME COMPLEXITY. The choice of which node to explore next
by a depth-first search strategy is made between the sons of the most recently
explored node (if any), otherwise the sons of the next most recently explored node,
and so on. Let ET(b) abbreviate E(Nr(b)) . E T will be subscripted with godf and
odf when necessary to distinguish between generation-order and ordered depth-
first search strategies.

An expression for E T can be formulated naturally as a recurrence relation.
Define the effective bound on a node N to be the value of the expression UB -
LB(N) at the moment that N is explored by BB. The concept of effective bound
enables us to treat each node as the root of a search tree with an initial value of
UB which is just the effective bound. Suppose that BB is searching a tree with the
structure shown in Figure 2a where each subtree t,, t2 t~ may be regarded as a
random tree. Let bo be a finite initial value of UB (the effective bound on the root)
and let b, denote the effective bound on the root of t, for 1 _< i < j. Then the
expected size of the search tree for a random tree with this structure is

ET(bo) = 1 + ET(b,) + ET(b2) + . . . + ET(bj).

Each of the bounds b, for 1 _ i < j is less than bo, indicating that a recurrence
relation may be set up. The next problem concerns the probability of a given bound
occurring at a given node. Consider the tree in Figure 2a. Given an initial
bound of bo, the bound on the subtree t~ is bo - c~ so BB is expected to search
ET(bo - cO nodes in t~. lcl(t0 = m with probability O(m) since tt is a ran-
dom tree. The same holds for the other subtrees. Suppose that lcl(fi) = mr. If
UB --- bo initially, then after searching the first subtree of the tree of Figure 2a
UB = min[b0, Cl + m~}. The effective bound on the root of the subtree t2 is
minlbo, c~ + rnd - c2. Continuing this reasoning, one finds that the effective bound
on the ith subtree t, is

b, = min[bo, c~ + m~, c2 + m 2 , . . . , c , - i + m,-d -- c, (5.1)

where m~, m2, . . . , m,-i denote the cost of the least-cost leaves of the subtrees fi,
t2, . . . , t,-~, respectively. E T evaluated with expression (5.1) yields the expected
number of nodes explored in t,.

Let the functions Wodf(b, i) and Wgoaf(b, i) denote the expected size of the search
tree of tt when the root is given an initial bound of b for an ordered-depth-first
search and a generation-order-depth-first search, respectively. An expression for

R a n d o m Trees and Branch a n d B o u n d Procedures 175

Wgodf(b, i) can be found by enumerating all possible combinations of variables in
(5.1).

oo ao oo co

Wgod~(b, i) = Y Y. Y~ . . . Y. Q(cO . . . Q (c ,) O (m ,) . . . O(mi- t)
CI~I C~I ml=0 m~_l=0

• ETsodf(min{b, cl + mi c,-i + m , - d - c,). (5.2)

A tree with a structure as in Figure 2a will have expected size

J

l "l" ~ Wgodf (b , i) .

This expression summed over all j (number of sons of the root) gives an expression
for ETgodf(b):

ETg~f(b) = Y~ P (j) 1 + Wg~f(b, i)
jm0 i=l

= 1 + Y~ P(j) Vggodf(b, i). (5.3)
3~1 z~l

As stated, (5.3) is computationally intractable; however, it can be refined to a more
computable form as given in Appendix A.

The order of examining the subtrees of Figure 2a by an ordered-depth-first search
is treated as follows. In an arbitrary tree with this structure the arc costs c~, c2, . . . ,
G are unordered. By rearranging the tree the arc costs can be brought into sorted
order. Note, though, that a given ordered sequence c1 --- c2 - • • • -< c, may result
from the sorting of many distinct sequences. The appropriate combinatorial
question is how many unique arrangements R,(ci, c2 , c,) of this sequence there
are. There are i! nonunique arrangements, but repetitions must be accounted for.
If k of the i values have the same value cj+~ = cj+2 •j÷k, then there is a
repetition factor of k! due to this relation. In general

R , (C l , C2 C,) =
r~!r2! . . . rk!

where

Cl "~" " ' " = Cr I < C r l + l = • " " = Cr l +r 2 < " ' " < Cr l+r2+ +rk_ 1 "~" " ' " "~" C r l ÷ r 2 + , . ÷ r k .

and rl + r2 + . . . + rk = t (i . e . , there are r~ variables with the same value, rz
variables with the same value, and so on).

Again, by enumerating all possible ordered sequences c~, . . . , c, and m~, . . . , m,_~
of the variables in (5.1), an expression for Woaf(b, i) can be found.

co co oo

Wodf(h, i) =]~ Y~ . . . Y~ Q (c ,) Q (c 2) . . . Q(c,)
CI~I C2mCl CI-I~Cl oo

R,(c, , cz c,) Y~ . . . ~ O(mi) . . . O(m,- l)
ml=0 m t - l ~ O

• ETodr(min{b, c~ + mt , c,-t + m,-t] - cj). (5.4)

A tree with a structure as in Figure 2a will have expected size

1
1 + Y. Wodr(b, i).

t = l

176 DOUGLAS R. SMITH

This expression summed over all j (number of sons of the root) gives an expression
for EToof(b):

EToof(b) = 2 P(J) 1 + Woof(b, i)
j=0 i=l

= 1 + • P (j) Woof(b, i). (5.5)
J=l I=1

The following theorems assert that over most classes of random trees a best-
bound-first search has strictly smaller expected time and space complexity than a
depth-first search.

THEOREM 5.1. Let df be any depth-first search strategy. I f P(O) + P(1) < 1 then
Edf(Nr) > 1 + PIP(O).

PROOF. If t is a random tree on which a df search is performed, let N9 denote
the corresponding value of the random variable ArT, and let at denote the number
of nodes inserted in the priority queue just prior to the removal of the first-found
leaf. By the argument of Corollary 4.1, N~ _> at for all t. We will construct a
random tree t ' which has nonzero probability, and such that N~ > at, then, using
Theorem 4.1,

P
Edf(NT) = Pr(t ')N~ + ~ Pr(t)N~-> Pr(t')a,, + Y, Pr(t)a, = 1 + -

,~,, ,~,, P(O)"

From Xk P(k) -~- 1 and P(0) + P(1) < 1 it follows that P(i) > 0 for some i > 1.
Assume for simplicity that i = 2. The following construction can be easily
generalized. Let c be a positive integer such that Q(c) > 0. t ' has nonzero probability
P(0)4p(2)3Q(c)6, at, = 5, and N$ = 7.

t' = c / ~ c Q.E.D.

, / ,,.

THEOREM 5.2. Let df be any depth-first search strategy. I f either (1) P(O) + P(i)
< I for all i > 0, or (2) P(0) + P(I) < 1 and Q(c) < 1 for all c, then

(P - 1)
Eaf(Ns) > 2 +

P(O)

PROOF. The proof of this theorem is directly analogous to that for Theorem
5.1.

5.2 TIME COMPLEXITY AS A FUNCTION OF THE DEPTH OF THE FIRST-FOUND
LEAF. The depth of the first-found leaf in a depth-first search has a strong effect
on the performance of the search. Intuitively, if this depth is great, then the
procedure will spend much of its time exploring nodes deep in the tree before
returning to shallower levels where the least-cost leaf may lie. It might be conjec-
tured that the size of a search tree tends to grow exponentially in the depth of the
first leaf which it finds. To the contrary, in our model the size of a depth-first
search tree is essentially linear in the depth of the first-found leaf.

Random Trees and Branch and Bound Procedures 177

. . . I Z_~ Z_~ /--31 x (d - ~)

" - J I ~ / ~ /__~1 X (l)
X(O) ~ ~"

FIG. 4. The structure of a depth-f i~t search tree.

Let S(d) be the expected number of nodes searched in a random tree, given that
the first solution occurs at depth d.

THEOREM 5.3. For classes of random trees in which limb._~ET(b), denoted
ET(oo), exists, S(d) exists and ts bounded above and below by linear functions of d.

PROOF. Let X(d) denote the expected number of nodes in the search tree, except
those in the first explored subtree, given that the first solution is found at depth d.
X(0) is defined to be 1. (See Figure 4.) From the definitions we have

d

S(d) = 1 + E X(k). (5.6)
k= 1

Since X(k) >_ 1, we have
d d

S (d) = l + E X(k) >- l + E l = l + d.
k=l k=l

It is shown in [36] that there is a constant a such that for all d X(d) <_ a <_ ET(oo).
It follows that

d

S(d) <_ 1 + ~ a = 1 + ad. Q.E.D.
k=l

Theorem 5.3 can be interpreted as follows: A depth-first search tree can be
decomposed along the path from the root to the first-found leaf into groups of
subtrees whose expected size X(i) is asymptotically constant (the ith group consists
of the 2nd, 3rd j th subtrees below the ith node on the path from the root to
the first-found solution).

All that is required for the proof of Theorem 5.3 is the existence of an upper
bound a on the sequence IX(d)}. The formal proof of the existence of a depends
on the independence assumptions of the model and on the existence of ET(oo). We
conjecture, however, that such a bound exists even for branch and bound algorithms
which are not well modeled by our assumptions. Intuitively, ET(~) may provide a
suitable bound. It would not be difficult to try to observe the linear behavior
predicted by Theorem 5.3 in branch and bound applications, but we have not
attempted to do so.

6. An Application to the Traveling Salesman Problem

A model of a particular branch and bound algorithm is an appropriate choice of P
and Q functions parameterized by the problem size. By analysis of the initial

178 DOUGLAS R. SMITH

relaxed instance for subtour-elimination algorithms for the traveling salesman
problem, we can derive limiting expressions for Pn where Pn(k) is the probability
that a random instance of the n-city TSP is split into k subinstances. As described
in Section 2 this algorithm makes use of a relaxation of the requirement that
feasible objects be cyclic permutations, and the initial relaxed instance corresponds
to the set Sn of permutations of n objects.

We assume that our set of input instances D is a class of cost matrices whose
entries are independently and identically distributed random variables. The prob-
lem is to find the least-cost permutation with respect to a given cost matrix. The
set Sn is a symmetric set in the sense that for any given pair ~rl, ,/i-2 ~ Sn there is a
relabeling (automorphism) of the permutations of Sn such that ~rt is mapped into
~r2. From this property it follows that all permutations are equally likely to be the
least-cost permutation initially. There are n! permutations in S. and (n - l)! cyclic
permutations (we can fix any of the n elements of an n-cycle as a starting point.
Thereafter there are (n - l)! ways to arrange the remaining n - l elements to close
the cycle). We find then that the probability that the least-cost permutation is cyclic
is

(n - 1)! 1
P,(0) = n ! n" (6.1)

The following theorem helps us obtain asymptotic values for P,(k) when k ~ 1.

THEOREM 6.1. Let S(n, k) denote the probability that a randomly picked
n-permutation is composed of cycles each of order greater than k assuming that all
permutations are equally likely. Then ~

lim S(n, k) = exp(--Hk) for k >_ O.

PROOF. We proceed by induction on k. First note that by definition the number
of n-permutations whose cycles all have order greater than k is n!S(n, k). For the
basis of the induction we note that all n-permutations are composed of cycles of
order greater than O. So for all n, S(n, O) = 1 = exp(-H0) and lim,~_~S(n, O) = 1 =
exp(-Ho).

Assume now that lim,~_~S(n, k - 1) = exp(-Hk-0 for some k > 0. The probability
S(n, k) can be formulated as (l/n!) x (number of permutations whose subcycles all
have order greater than k). The essential idea here is to subtract the number of
permutations which contain some cycles of order k from the n!S(n, k - 1)
permutations which have cycles all of order >k - 1. First of all there are n!S(n, k
- 1) permutations whose cycles have order greater than or equal to k. Suppose
now that we select k nodes (regarding them as material for a cycle of order k).
There are (~,) ways to select k nodes, k - 1! ways to arrange them in a cycle, and
there are (n - k)!S(n - k, k - 1) ways to form permutations on the remaining n -
k nodes such that all cycles have order greater than or equal to k. Suppose next
that we select two sets of k nodes. There are (~,)(,~k) ways to select them, (k - l)!(k
- 1)!/2! unique ways to arrange the two sets into two cycles of order k (the divisor
2! is the number of ways of picking the same set of two cycles), and there are (n -
2k)!S(n - 2k, k - 1) permutations of the remaining n - 2k nodes such that all
cycles have order greater than or equal to k. In general sup, pose we select m disjoint
sets of k nodes and arrange each set into a cycle of order k. There are (~,)(,2k)...
("-~k k÷k) ways to pick m such sets, (k - l)W/m! ways to arrange these sets into

i The numbers H. = Y,~.I l / k are called harmonic numbers and occur frequently in the analysis of
algorithms.

R a n d o m Trees a n d Branch a n d B o u n d Procedures 179

cycles of order k (there is a repetition factor of m! because each particular
arrangement of the m cycles can be permuted in m! ways), and finally there are
(n - mk) !S (n - m k , k - 1) ways to arrange the remaining n - m k nodes into
permutations composed of cycles of order greater than or equal to k.

Applying the principle of inclusion-exclusion [29], we find

S(n, k) = Y. (-1) m ~. . . .
ra~0

• (n - mk) !S (n - m k , k - 1)

tn/kJ (--1) m (k - 1)!" n! (n - k)! (n - m k + k)!

m=0 n! m! k!(n - k)! k!(n - 2k)! k!(n - mk) !

• (n - mk) !S (n - m k , k - 1)
tn/kJ (_ 1/k) m

= Y~ m-----~. S (n - m k , k - 1).
m~O

Taking the limit of this function, we obtain
tn/k]

lim S(n, k) = lim Y, (-1/k)-------~ S(n - m k , k - 1)

® (_ i l k) m
= Y~ m! lim S(n - m k , k - 1)

m ~ 0 ? l ~

oo

--- ~ (-1/k)m exp(--Hk-i) (by induction hypothesis)
m-o m!

= e x p (- H k _ i) e x p (- 1 / k)

= exp(--Hk). Q.E.D.

An immediate corollary of Theorem 6.1 is the well-known result that the number
of n-permutations which do not have any l-cycles is n!S(n, 1) which is asymptotic
to n!exp(-H0 = n ! / e (this is known as the problem of derangements [29]). Our
intended application of Theorem 6.1 is the probability that the least-cost permu-
tation has k sons (its smallest subcycle is of order k).

THEOREM 6.2• The asympto t ic probabi l i ty that the smal les t order cycle o f a
random permuta t ton has order k is

l im en(k) -- e x p (- H k - i) - - exp(--Hk). (6.2)
n ~

PROOF. The probability that a random permutation ~r has a smallest subcycle
of order k is the probability that the cycles of ~r have order greater than k - l,
minus the probability that the subcycles of ~r have order greater than k. The
theorem then follows directly from Theorem 6.1. Q.E.D.

The growth of
tn/2]

P,--- Y, kP , (k)
k~l

has been shown in [35] to be asymptotic to exp(--/)ln(n), where ~, = 0.577 ... is
Euler's constant, which can also be seen by considering the asymptotic growth of

tn/23

Y, k [e x p (- H k - O - exp(--Hk)l. (6.3)
k ~ l

180 DOUGLAS R. SMITH

The formulas (6.1) and (6.2) describe the behavior of a subtour-elimination
algorithm on a random instance of the TSP, since any permutation is equally likely
to be the least-cost permutation. Assuming that it can be shown that for random
subinstances the expected branching factor is O(ln(n)), and the probability that the
relaxed solution is cyclic grows no slower than 1/n, then by Theorem 4.1 the
expected search tree size for a random TSP instance is O(n In(n)). The running
time of BB on a random instance is dominated by two factors. First, the time spent
solving the assignment problem is O(n 3) for the initial instance and O(n 2) for all
other subinstances in the tree. The net contribution of these terms is

O(n 3) + O(n In(n)) • O(n ~) = O(n31n(n)).

Second, when there are m objects in the priority queue, O(ln(m)) time is sufficient
for both insertion and deletion. It is shown in Appendix B that the mean queue
maintenance time for a random TSP is O(n21n2(n)). Thus the expected running
time of a subtour-dimination algorithm is

O(n31n(n)) + O(n21n2(n)) = O(n31n(n)). (6.4)

(6.4) is consistent with empirically obtained estimates of the expected running time
of subtour-elimination algorithms. Bellmore and Malone [4] report O(n TM) ex-
pected running time over the range 10 _< n - 80, and O(n 32) is given in [37] for
the range 30 _ n _ 200. It has been pointed out in [28] that establishing O(n-C),
for some constant c, as a lower bound on the probability that a random subinstance
yields a feasible relaxed solution is sufficient to establish polynomial expected
running time for these algorithms. Note that the average branching factor must be
O(n). While the evidence suggests such a result, it remains an open theoretical
problem.

The probability that the least-cost n-permutation has a 1-cycle for large n is
roughly exp(-Ho) - exp(-Hl) = 1 - l / e = 0.63. Since a traveling salesman tour
cannot have any l-cycles, if we insert infinites along the diagonal of our random
cost matrices we do not lose any cyclic permutations, yet we reduce the size of the
relaxed space by about 63 percent. Unfortunately, there is no readily apparent
analogous method for precluding permutations with 2-cycles (or higher order
cycles). We can estimate the probability that a cyclic permutation is optimal with
respect to the altered matrix as

P;(0) = (n - 1).____.~ v. = e. (6.5)
(n!/e) n

It cannot be shown that (6.5) is asymptotically correct as easily as (6.1) can be
shown correct because the set of permutations without l-cycles is not symmetric
in the sense given above. Nonetheless, observations of randomly generated traveling
salesman problems given in Table I supports (6.5). With respect to the modified
matrix, the probability P'(k) that the optimal solution to a random instance has a
smallest order cycle of order k is estimated by P,,(k)/(1 - P,(1)) which converges
to the value

(exp(--Hk-l) -- exp(--Hk))
= e(exp(-Hk-O - exp(--Hk)). (6.6)

((1 -) (1 - 1))/e

A simple estimate of Pf is

exp(l - ~r)ln(ln/2J - 1) (6.7)

Random Trees and Branch and Bound Procedures

TABLE I. BEST-BOUND-FIRST SEARCH

181

Sample Mean
Number of mean search Estimate Sample

Size of problems search tree size by Sample P of Pby P(0)
problem solved tree size (6.8) at root (6.7) at root

P(0) by eq.
6.5 (= e/n)

l0 1000 6.48 8.78 2.03 2.12 0.261 0.262
15 1000 12.28 16.11 2.58 2.74 0.186 0.181
20 1000 19.63 25.66 3.09 3.35 0.153 0.136
25 790 31.19 34.58 3 50 3.66 0.106 0.109

TABLE I1. DEPTH-FIRST SEARCH a

Sample values of P at depth m in the search tree

/(0)
/9(2)
/(3)
/°(4)
/(5)
/9(6)
/(7)
t(8)
/9(9)
/(10)

P

0 1 2 3 4 5 6 7 8

0.135 0.230 0298 0.322 0331 0.349 0.354 0.356 0.364
0.386 0.195 0.141 0.122 0.115 0.101 0090 0.099 0.084
0.180 0.159 0.133 0.123 0.115 0.106 0.105 0.098 0.099
0.105 0.108 0.109 0.102 0.097 0.096 0.090 0.089 0.087
0.066 0.085 0.086 0.082 0.081 0.084 0.087 0.091 0.098
0.037 0.055 0.065 0.068 0.071 0.072 0074 0.066 0.067
0032 0.049 0049 0.056 0.056 0.060 0.061 0.054 0.065
0.030 0.050 0.050 0.052 0.053 0.055 0.057 0.062 0.055
0020 0.042 0.046 0.049 0.053 0.052 0.054 0.060 0.055
0.009 0.026 0.023 0.023 0.028 0.026 0.027 0.024 0.025

3.018 3435 3.324 3.338 3.367 3344 3.373 3.353 3.345

9

0.373
0.090
0.101
0.081
0.096
0.067
0.051
0.055
0.054
0.033

3.302

10+

0 368
0.097
0.088
0.089
0.096
0.070
0.047
0.056
0.060
0.031

3.341

a Data from the soluUon of 790 randomly generated asymmetric traveling salesman problems with 20
nodes by a subtour-elimlnat~on algorithm using a depth-first search strategy and given an initial bound
of 1000 plus the lower bound on the root. Sample values of the probabdity function P a t various depths
m the search tree are gwen. At the bottom of each column is the sample mean of P for nodes found at
that depth. The last column summarizes data on nodes of depth 10 or more.

which is the asymptotic value of
n/2

= ~ ke(exp(-Hk_t) - exp(-Hk)).
k=2

Plugging our estimates (6.5) and (6.7) into the expression I + P/P(O) from Theorem
4.1 we obtain

E(NT) ~ 1 + exp(-q,)n ln(/n/2J - 1). (6.8)

In Table I the estimate (6.8) is computed for several values of n. Compared with
these values are empirical values of E(Nr) found by averaging Nr over randomly
generated traveling salesman instances for each value of n solved by the subtour-
elimination algorithm under a best-bound-first search strategy. Random cost
matrices were generated by putting independently and uniformly distributed ran-
dom integers between 1 and 1000 in each entry. The diagonal entries were set to a
very large number.

Table II presents data on the probablities of the various branching factors of
nodes at different depths in the search tree. Notice that P,(0) appears to increase
monotonically with depth. This provides evidence that e/n is indeed a lower bound
on Pn(0). The most dramatic changes take place between depth 0 and depth 1. In
particular, Pn(0) almost doubles and Pn(2) roughly halves. Below depth l there is
relative stability of the sample probabilities and sample mean. The fact that the

182 DOUGLAS R. SMITH

TABLE III. DATA FROM DEPTH-FIRST SEARCH USING AN INITIAL
BOUND OF 1000 + THE VALUE OF THE LOWER BOUND

ON THE ROOT

Sample
Number of mean

SJze of problems search tree ET bound ET' bound
problem solved size = 1000 = 1000

10 1000 10.36 11.06 13.45
15 1000 35.82 30.03 38.61
20 790 81.85 64.40 88.72

TABLE IV. DEPTH-FIRST SEARCH USING AN INITIAL BOUND OF o o

Num-
ber of
prob- Mean search tree s~ze when the leftmost branch has length d

Size of lems
problem solved 0 1 2 3 4 5 6 7 8 9 10

10 1000 1 5 12 20 27 36 43 51 m
15 1000 1 14 35 48 72 89 99 111 125 145
20 790 1 17 35 85 94 128 160 182 207 299

estimate (6.8) provides an upper bound on the sample data seems to be due to the
increase in Pn(0) with depth.

In order to predict some of the properties of a depth-first search on traveling
salesman instances, we need a way of estimating the probability function for the
arc cost Q,. We have found empirically that Q, is estimated by the geometric
function

Q~(k) = (0.000054n) \ (1
1

k

+ 0.00054n] " (6.9)

Table III compares some sample mean time complexity statistics for randomly
generated traveling salesman problems solved using a depth-first search with
estimates generated by the function ET introduced in Section 5. The randomly
generated problems were given an initial bound of 1000 (actually 1000 + lower
bound on the initial feasible set) and the recurrence relation for ET was computed
out to ET(1000). We used (6.9) for Qn and our formulas (6.5) and (6.6) for P,~ in
computing ET, in the column marked ET(1000). Note that ET(IO00) using this
P;, function underestimates the sample mean. We obtain a better estimate by
amending P', as follows: Halve P'(2) and distribute the difference over P;,(3),
P'(4) P'(tn/21). We retain P'(0) = e/n. In this way the mean of/5,~ has been
increased and the lower bound on P'(0) remains (cf. Theorem 4.1). The bounds
obtained using this P;, function in ET are given in the column labeled ET'(1000)
in Table III.

Theorem 5.3 predicts that the expected size of the search tree in a depth-first-
search grows essentially linearly as a function of the length of the left-most path in
the search tree. Empirical data gathered from random TSP instances are presented
in Table IV and Figure 5. The data in Figure 5 clearly show the linear growth of
the mean search tree size for as far as the sample means are meaningful.

7. Concluding Remarks

A random process for generating arc-labeled trees has been defined and some of
its properties have been developed. This process has served as a model of the kind

Random Trees and Branch and Bound Procedures 183

Mean
Search
Tree
Size

,i

210 -

180 -

150

120

90

It

It
It

II
+

4"
÷

6° t 30 t: • • •
° •

0 I I I I I I I I I :
0 I 2 3 4 ,5 6 7 8 9 10 I1

Length of the leftmost branch in the search tree

FIG 5. The data from Table IV piottedmshowlng the growth of the sample
mean search tree size as a function of the length of the leftmost branch in the
search tree The orcles, pluses, and x's represent data points from the traveling
salesman problems of size 10, 15, and 20, respectwely.

of trees generated by a branch and bound procedure and has enabled the derivation
of a number of formulas for the expected space and time complexities of a branch
and bound procedure under several search strategies. In particular, it has been
shown that the best-bound-first search strategy is optimal in both time and space
complexity. These results, together with the simplicity of the basic branch and
bound procedure in Section 2, and the existence of effÉcient techniques for
implementing priority queues [1], strongly suggest the use of the best-bound-first
search strategy in applications.

A similar random process has been used by Lapin [23] to model branch and
bound procedures which seek the least-cost node at a fixed depth. The class of
search strategies investigated are realized by the heuristic function

h(N) -- LB(N) - adepth(N)

where a is a parameter. Solutions are guaranteed to be optimal iff a is zero.
Generating functions are derived for the number of instances to which the branch-
ing function is applied and for the distribution of solution costs found by the
algorithm. In principle, one could derive an expression for the expected value of
the time complexity from the former generating function, but it appears to be
difficult to do so, and Lapin does not carry out this exercise.

Variations of our model can provide models for other procedures whose essential
nature is tree searching. In many branch and bound procedures a solution is found
at some fixed depth k. Several types of models for this situation were mentioned
in Section 2. Game trees can be modeled by (P, Q)-trees in which the domain of
Q is I-c, c] for some positive constant c. A negative arc cost corresponds to a move
in which the resulting board is evaluated as being less good than the starting
position. An advantage to this model, in comparison to other models of game trees
which have been explored [21], is that dependencies between moves are propagated
in the tree, that is, all moves following a bad move (corresponding to a negative
arc cost) would tend to have lower evaluations than the moves following a good

184 DOUGLAS R. SMITH

move (corresponding to a positive arc cost). Another advantage is that randomness
in the number of legal (or plausible) moves is part of the model.

Our model is particularly suited for modeling relaxation-guided procedures,
where there is some chance that any node in the search tree of a random instance
of a problem may produce a feasible solution. The success of the assignment
problem relaxation for solving asymmetric traveling salesman problems and Held
and Karp's l-tree relaxation for solving symmetric traveling salesman problems
suggests that the search for polynomial expected time algorithms for solving NP-
hard problems might begin by looking for suitable relaxations and fast algorithms
for solving them. The search for fast approximate algorithms for NP-hard problems
can also benefit from the use of relaxations of a problem. A relaxed solution to an
instance may have many of the components of an optimal feasible solution, thus
a heuristic restructuring of the relaxed solution might produce a feasible solution
of near optimal cost [19].

Appendix A

Several of the results of this paper have been formulated as somewhat complex
recurrence relations. We show how two of these recurrence relations can be broken
down into simpler relations which aid in the computation of their sequences. In
Section 3 the function 0 was introduced in the form

Q(c)O(s - c)]: [1 - O (k) - - Y, P (j) 1 -
k = O j = l S=--I C'=I

with boundary condition 0(0) = P(O).
Let

E(s) = 2 Q(c)O(s- c),
c=-I

G(i)= 1 - ~ ~ Q (c) O (s - e) ,
s'=l c"~l

= 1 - ~ E (s) - - G (i - l) - E (i) ,
S=I

oo

B(i) = Y, P(j)G(i):,
J=l

O(i) = B(i - 1) - O(l).

Note that B(i) = 1 - YJ,=00(k); therefore B(i - 1) - B(i) = O(i). The sequence
{O(i)},=o: may be computed as follows (assuming a suitable bounding of the
computation of B(i)).

begin
G(0) := 1;
a(o) := I -e(O);
o(o) := t'(o);
for i := 1 until n;

begin
EO) := Y.:=, Q(c)O(l - c);
G(i) := G(i - 1) - E(i);
B(i) := Y~7=, P(j)G(i)';
O(i) := B(t - I) - B(i);

end
end

Random Trees and Branch and Bound Procedures 185

The recurrence relation for ET(b) introduced in Section 6 can be simplified in a
similar manner. ET(b) has the form

ET(b) = 1 + Y. P(j) W(b, i) (A1)
J~l l~l

where

W(b, i) = Y~ . . . Y~ Y~ . . . Y~ Q (c ,) . . . Q (c ,) O (m O . . . O(m,-O
Cl=l q = l mira0 mt_l=O

• ET(minlb , c~ + m~, c2 + m2, . . . , c,_~ + m,_~} - c,).

Essentially, W(b, i) has the form
oo

W(b, i) = Y~ R(b, i, k) ~ Q (c ,) E T (k - c,) (A2)
k = l ci=l

where R(b, i, k) = probability that k = min{b, c~ + ml, . . . , c,-t + m,-lt. (The term
cj + mj is the cost of the least-cost leaf in the j t h subtree below the root; c.f. Figure
2a.) In other words, k is the value of the bound immediately after the i - 1st
subtree has been explored. R(b, l, k) may be formulated easily as follows: We have
two cases, either k = b or k < b. The probability that k = b is

R(b, i, b) = Pr(cl + mt -> b)Pr(c2 + m2 -> b) . . .Pr(c , - t + m~-l >- b).

Again let

E(s) = E Q(c)O(s- c)
c=-I

k - I

G(k)= 1 - Y, ~. O (c) O (s - c)
S=I c'=l

k--I

= 1 - Y, E (s) = G (k - 1) - E (k - 1).

Here G(k) = Pr(c + 1 _ k) and E(k) = Pr(c + 1 = k), so R(b, i, b) = G(b)'-'. (A3)

The other case we need to consider occurs when one of the subtrees contains a
least-cost leaf which improves the initial bound b. The probability that the bound
has the value m is the probability that one of the subtrees has a least-cost leaf of
cost m and the rest have least-cost leaves of cost _m; thus, no/icing that each of
the i - 1 subtrees may contain the least-cost leaf, we have,

R(b, i, m) = (i - l)E(m)G(m) '-2. (A4)

Substituting (A3) and (A4) into (A2) we get
b - I

W(b, i) = Y, (i - l)E(k)G(k)'-ZD(k) + G(b)'-tD(b)
k= 1

where

Further, letting

H(b, i) =

k

D(k) = ~,, Q (c) E T (k - c).
c=--I

b - I

Y. (i - l)E(k)G(k)'-2D(k)
k=l

= H (b - 1, l) + (i - 1) E (b - 1) G (b - 1) ' -2D(b- 1),

186 DOUGLAS R. SMITH

we have

W(b, i) = H(b, i) + G(b)'-tD(b).

Looking again at (A l), we see that we need partial sums o f W(b, i), so let

V(b, i) = ~ W(b, i) = V(b, i - 1) + W(b, i)
)~1

= V(b, i - 1) + H(b, i) + G(b),_~O(b).

Putting all these pieces together, we can compute [ET(b)}b-O.n as follows.

begin
ET(0) := l;
for all b, V(b, O) := O;
for all b, H(b, O) := O;
G(0) := l;
E(0) :-- 0;
for b := 1 until n do

begin
f o r / : = 1 ,

H(b, i) := H(b, t - 1) + (i - l)E(b - l)G(b - l)'-ZD(b - 1);
G(b) := G(b - 1) - E(b - 1);
E(b) := Y~k, Q(c)O(b - c);
D(b) := Y ,~ Q(c)ET(b - c);
for t := 1 until ~;

V(b, t) := V(b, t - 1) + H(b, i) + G(b)'-~D(b);
ET(b) := 1 + Y.7-, P(j)V(b,j);

end
end

The infinities which appear in the algorithms of Figures A 1 and A2 only come into
play when P has an infinite range, that is, arbitrarily large branching factors are
possible. In most practical classes of problems the branching factor is in fact
bounded. When modeling such cases the infinities are replaced by whatever bound
exists on the branching factor. In an implementation of this algorithm, the arrays
E, G, and D can be replaced by single variables, since only the most recently
computed value of the corresponding array is ever used. Similarly the two-
dimensional arrays V and H can be reduced to one-dimensional arrays.

Appendix B

In this section we derive a bound on the expected queue maintenance time for a
best-bound-first search. The generating function for the random sum (4.1) is 1 +
gn(pn(Z)) where gn is the generating function for the number of terms k in (4.1),

gn(Z) = Y, (1 -P~(O))'e~(O)z i
t~O

and p,(z) is the generating function for P~,

p,,(z) = ~ P,,(i)z'.

Letting R,(i) denote the probability that N r -- i + 1, we have
c o

g . (p . (z)) = R . (O z 1.
t~O

Random Trees and Branch and Bound Procedures 187

When the search tree size is Nr = i + 1, we have at most 2(i + 1) insertions and
deletions from the priority queue which takes O(2(i + l)ln(2(i + 1))) = O(i In(i))
t ime [1]. To within a constant factor the expected queue maintenance t ime then is

i ln(i)Rn(i). (BI)
l=l

A bound on (B 1) can be obtained from the generating function

d 2 ®
h,(z) = zZ--~z gn(p,,)= ~ i (i - l)R,(i)z'.

l=O

Note that (B l) is bounded by h,(l). Performing the differentiation we find

h.(1) = g'(l)p'(1)p'(1) + p~(1)g'(1)

where f ' (z) denotes (d/dz)f(z) and f"(z) denotes (d2/dz)f(z). Using the estimates
P.(O) = e/n, and P.(k) = (exp(-Hk-O - exp(-Hk)), we find

g;;O) = ;g~ (1) ~ = O(n2),
p ' (l) -- P . = O(ln(n)) ,

n/2 n/2

p~(1) = Y~ k (k - l)Pn(k)= ~ k (k - l) e (e x p (- H k _ 0 - exp(--Hk))
k~l k=l

n/2 n/2

= 2e Y~ k exp(-Hk) -< 2e ~ k exp(--r - In(k))
k~l k'~-I

e x 0 , , - , >

Thus

hn(1) = O(n21n2(n)) + O(n 2) = O(n21n2(n)).

ACKNOWLEDGMENTS. Most of the results presented above originally appeared in
the author's dissertation [36], supervised by Alan Biermann. His interest in search
theory helped motivate this research. The referees provided several suggestions
which led to improvements in the correctness and readability of the manuscript.

REFERENCES
1. AHO, A V., HOPCROFT, J.E., AND ULLMAN, J.D. The Deszgn and Analysts of Algorithms. Addison-

Wesley, Reading, Mass., 1974.
2. BALAS, E. A note on the branch and bound principle. Oper Res 16 (1968), 442-445.
3. BELLMORE, M., AND NEMHAUSER, G.L. The traveling salesman problem: A review. Oper. •es 16

(1968), 538-558.
4. BELLMORE, M., AND MALONE, J.C. Pathology of traveling salesman subtour-eliminaUon algo-

rithms. Oper Res. 19 (1971), 278-307.
5. Fox, B.L., LENSTgA, J.K., RINNOOY KAY, A.H.G., AND SCHRAGE, L.E. Branching from the largest

upperbound. European d Oper Res 2(1978), 191-194.
6. GAREY, M.R., AND JOHNSON, D.S. Computers and Intractzbthty" A Grade to the Theory of NP-

Completeness Freeman, San Francisco, 1979.
7. GARFINKEL, R.S. On partitioning the feasible set m a branch and bound algorithm for the

asymmetric traveling salesman problem. Oper. Res. 21 (1973), 340-343.

188 DOUGLAS R. SM1TH

8. GARFINKEL, R.S., AND NEMHAUSER, G.L. Integer Programming Wiley, New York, 1972.
9. GREENBERG, H., AND HEGERICH, R. A branch search algorithm for the knapsack problem.

Manage. Sci, 16, 5 (1970), 327-332.
10. HARRIS, T.E. The Theory of Branchmg Processes. Springer-Verlag, Berlin, 1963.
11 HELD, M., AND KARP, R.M. The travehng salesman problem and minimum spanning trees. Oper.

Res, 18 (1970), 1138-1162.
12. HELD, M., AND KARP, R.M. The traveling salesman problem and mmimum spanning trees: Part

II. Math. Program. 1 (1971), 6-25.
13. HOROWITZ, E., AND SAHNI, S. Computing partitions with applications to the knapsack problem.

J ACM21, 2 (Apr. 1974), 277-292.
14. IBARAKI, T Theoretical comparison of search strategies in branch and bound algorithms. Int J

Comput. Inf. Sci. 5, 4 (1976), 315-344
15. IBARAKI, T. The power of dominance relations in branch-and-bound algorithms. J ACM 24, 2

(Apr. 1977), 264-269.
16. IBARAKI, T. Branch and bound procedure and state-space representaUon of combinatorial opti-

mization problems. Inf. Control 36 (1978), 1-27.
17 IONALL, E., AND SCHRAGE, L. Application of the branch and bound techmque to some flow-shop

scheduling problems. Oper Res 11 (1965), 400-412.
18. KANAL, L.N. Problem solvmg models and search strategies for pattern recogmtion. IEEE Trans.

Pattern Anal Mach. Intell I, 2 (Apr. 1979), 193-201.
19. KARP, R.E. A patching algorithm for the nonsymmetric traveling salesman problem. SIAM J

Comput 8, 4 (Nov. 1979), 561-573.
20. KLEE, V., AND MINTY, G.J. How good is the simplex algorithm? Math. Note No. 643, Boeing

Scientific Research Laboratories, 1970.
21. KNUTH, D.E., AND MOORE, R.W. An analysis of alpha-beta pruning. Artif Intell. 6 (1975),

293-326.
22. KOHLER, W.H., AND STEIGLITZ, K. Characterization and theoretical comparison of branch-and-

bound algorithms for permutation problems. J. ACM21, 1 (Jan. 1974), 140-156.
23. LAPIN, YU. P. Probability modeling of branch and bound method. Cybernetics 3, 16 (May-June

1980), 428-434.
24. LAWLER, E.L. The quadratic assignment problem. Manage Scl. 9, 4 (July 1963), 586-599.
25. LAWLER, E.L., AND WOOD, D.E. Branch and bound methods: A survey. Oper Res 14, 4 (1966),

699-719.
26. LAWLER, E.L. CombmatorlalOptlmtzatlon Networks and Matrolds Holt, Rinehart, andWmston,

New York, 1976.
27. LEMKE, C.E., SALKIN, H.M., AND SPIELBERG, K. Set covering by single branch enumeration with

hnear programming subproblems. Oper Res 19 (1971), 998-1022.
28. LENSTRA, J.K., AND R1NNOOY KAN, A.H.G. On the expected performance of branch and bound

algorithms. Oper. Res 26, 2 (1978), 347-349.
29. LIu, C.L. Introductwn to Combmatonal Mathematics. McGraw-Hill, New York, 1968.
30. MARTELLI, A., AND MONTANAR1, O. Optimizmg decision trees through heuristically guided search.

Commun ACM 21 (1978), 1025-1039.
31. MITTEN, LG. Branch and bound methods: general formulation and properties. Oper Res. 18

(1970), 24-34.
32. N1LSSON, N.J. Problem Solvmg Methods m Amficml Intelhgence McGraw-Hill, New "l~ork 1971.
33. RINNOOY KAN, A.H.G. On Mittens' axioms for branch and bound. Working Paper W/74/45/03,

Graduate School of Management, Delft, The Netherlands, 1974.
34. SHAPIRO, D.M. Algorithms for the solution of the optimal cost and bottleneck traveling salesman

problems. Unpubhshed Sc.D. dissertation, Washmgton Univ., St. Louis, Mo., 1966.
35. SHEPP, L.A., AND LLOYD, S.P. Ordered cycle length in a random permutation. Trans. Am. Math

Soc 121, 2 (Feb. 1966), 340-357.
36 SMITH, D.R. On the computational complexity of branch and bound search strategies. Ph.D.

dissertation, Duke Univ., 1979. Available as Tech. Rep. NPS 52-79-004, Dept. of Computer
Science, Naval Postgraduate School, Monterey, Calif.

37 SMITH, T.H.C., SRINIVASAN, V., AND THOMPSON, G.L. Computational performance of three
subtour-elimlnatton algorithms for solving travehng salesman problems. Ann D~screte Math 1
(1977), 495-506.

RECEIVED MARCH 1981; REVISED NOVEMBER 1982; ACCEPTED DECEMBER 1982

Journal of the Assocmtion for Compubng Machmery, VoL 31, No l, January 1984.

