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Abstract 

Planware is an integrated development environment for the domain of complex planning and scheduling systems. 
Its design and implementation aim at supporting the entire planning and scheduling process including domain 
analysis and knowledge acquisition; application development and testing; and mixed-initiative, human-in-the-loop, 
plan and schedule computation. Based on principles of automatic software synthesis, Planware addresses the 
problem of maintaining the synchronization between evolving specifications, and the corresponding system 
implementation. Planware automatically generates optimized and specialized planning and scheduling code from 
high-level models of complex problems.   

Resources and tasks are uniformly modeled using a hierarchical state machine formalism that represents activities 
as states, and includes constructs for expressing constraints on states and transitions. The generator analyzes the 
state machine models to instantiate program schemas generating concrete implementations of backtrack search and 
constraint propagation algorithms. Coordination between resources and tasks is achieved through the use of services: 
tasks require services, and resources provide services. Planware’s scheduler generator component matches providers 
with requesters, and automatically generates the code necessary to verify and enforce, at schedule computation time, 
the service constraints imposed in the model. Planware’s user interface is based on Sun’s NetBeans platform and 
provides integrated graphic and text editors for modeling complex resource systems, automatically generating batch 
schedulers, and executing the generated schedulers on test data sets.   
 
1. Introduction  
 

Planware is an integrated development environment for modeling scheduling problems, and automatically 
generating high-performance batch scheduler systems. Planware supports 

1. The precise modeling of complex resources and their interactions,  
2. The automatic generation of high performance scheduling components from those models,  
3. The synthesis of application-specific tools to help the user visualize complex schedules 
4. XML-based glue to support the integration of generated schedulers into target environments. 
The main innovation of this work is a state machine-based formalism for modeling complex resource systems. 

This formalism provides a good balance between abstraction (minimal implementation detail), precision (clear 
semantics), and expressiveness (supporting the modeling of a wide range of planning, scheduling, and resource 
allocation problems). The key to modeling complex resource systems is to represent single resources together with 
their interaction.  The dynamics of both tasks and resources are represented by state machine-based models. A key 
insight was that the interaction among resources could be modeled by extending the state machine formalism to 
support services. The service description provides a very powerful mechanism to specify dependencies and 
constraints between resources using a simple and intuitive syntax.  For example, cargo is modeled as an activity that 
requires transportation service. An aircraft provides transportation service and, in turn, requires the service of a 
crew. The matching of the required and offered services in this case prescribes the need for a synchronized 
reservation of the cargo, the aircraft, and the crew for each flight segment.   

The Planware formalism is a specification language, not a programming language.  A model of a complex 
resource system provides no intrinsic clues about how to find schedules that satisfy its constraints.  Algorithmic and 
data structuring knowledge is added by the generator to produce the scheduler code.  In this sense Planware is 
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related to systems such as Amphion [Lowry94] and AutoBayes [Fischer00] that provide automatic code generators 
for domain-specific specification languages.  

 
 2.  Modeling Complex Resource Systems  
 

Planware’s main goal is to automatically generate high-performance resource planners and schedulers for problem 
domains involving large numbers of different resources interacting according to complex sets of constraints. 
Traditional approaches to modeling complex scheduling problems, like the ones based on mathematical 
programming techniques, typically result in a large monolithic model that is difficult to solve, understand, and 
maintain. To avoid this drawback, Planware takes a compositional approach to modeling with the objective of 
minimizing model complexity, and facilitating model maintenance and understanding. Some of the requirements for 
the modeling formalism are:  

1. Should naturally support the concepts defined by a general planning and scheduling ontology. 
2. Should map to a graphical representation of models capable of conveying a high level view of the problem 

structure.  
3. Should use syntax constructs familiar to most programmers and computer scientists.  
4. Should use a modeling paradigm similar to the ones used by modern computer languages. 
5. Should separate domain knowledge from problem-solving knowledge.  
6. Should minimize modeling complexity by embedding complex constraints in the internal structure (implicit 

semantic) of models.  
7. Should represent tasks and resources using the same formalism. 
8. Should represent interactions between resources/tasks and associated constraints. 
9. Should distinguish between individual resource constraints and constraints resulting from interactions 

among different resources. 
10. Should implicitly convey the notion of elapsed time, duration of activities, and temporal dependencies. 
The formalism developed for Planware, based on an extension of Abstract State Machines [Gurevich, 

Pavlovic02], addresses all the requirements above. In the next paragraphs we describe how abstract state machine 
models are used to represent resources and tasks.  Before presenting the actual structure and syntax of the models, 
we describe the intuition that drove the development of the formalism.  
 
Resources as Activity machines 
 

[Smith97] describes an ontology for planning and scheduling systems. The five top-level entities in this ontology 
are tasks or demands, activities, resources, services, and constraints. Using this ontology, the role of a scheduling or 
planning system can be described as the prescription of a sequence of activities that a set of resources must perform 
over time to perform the services required by a task. Based on this description, it is clear that any formalism for 
describing a scheduling problem domain must be able to represent tasks, resources, activities, and services, plus 
associated constraints. 

If we consider the processing of an activity by a resource as a possible “state” or “mode” the resource entity can 
assume, we can think of a resource model as the description of all the valid sequences of activities it can perform.  
For example, a transportation aircraft might have the following sequence of activities:   

Prepare → fly → land → fly → fly → unload → fuel → fly → and so on 
Or 
Prepare → fly → fly → unload → fuel → fly → and so on 
Each legal sequence of activities is called a behavior. A resource is characterized by a potentially infinite 

collection of behaviors. The usual trick for concisely representing an infinite collection of behaviors is by a state 
machine. Our modeling approach is based on state machines, although the term “state” is somewhat misleading and 
we prefer to call our models activity machines, as exemplified in Figure 1. 

In the activity machine diagram, we refer to the boxes/states as activities and the arrows are called transitions and 
indicate which activities can legally follow one another. 

The activity sequences per se give us general information about the sequencing of activities for a resource, but 
little information about the activities. Clearly in scheduling we need to model the timing of activities, as well as 
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Prep 

requires 
fuel(st,ft) 

fuel(orig, dest)≤ fuel-amt 
weight(mani) ≤ max-cap 
offers transport(orig,dest,st,ft) 
requires crew(st,ft) 

loc=dest 
∧ ft ≤ st’

ft ≤ st’  
loc≠dest ∧ ft + 135 ≤ st’

ft ≤ st’ 
Offload Fly 

Figure 1 Activity Machine For Transportation Aircraft 
 
 
 
capacity of a resource to do useful work, and other physical constraints.  The next step in modeling resources is to  
represent information about an activity via activity variables, simply called variables. The set of variables defined 
for a particular resource model represents a state descriptor that is used to describe all activities performed by this 
resource. For example, a Fly activity of a transportation resource might be characterized by variables that model its 
start time, finish time, origin, destination, and others. Planware uses the same collection of variables to characterize 
all activities of an activity machine, and this collection is sometimes called the signature of the machine (See Figure 
2). Technically, each activity is treated as a first-order theory, with the signature providing the vocabulary of the 
theory, and the axioms specifying constraints on the meaning of the variables (and other vocabulary).  

The variables defining the signature of an activity machine are further divided into four groups: constants, 
internal variables, external variables, and input variables.  

• Constants are the fixed parameters used to characterize invariant aspects of the resource. For example, the 
size of the cargo holder of an aircraft, its maximum speed, the maximum amount of fuel it can carry are parameters 
that can be constants for a given aircraft type. The set of constants define the input values that should be provided to 
the scheduling system to create concrete instances of resources at schedule computation time.  

• Internal variables are auxiliary variables used by the scheduler for bookkeeping purposes. For example, if 
there is a constraint that states than an aircraft needs to go through preventive maintenance after a certain number of 
hours flown, an internal variable can be used to maintain the number of hours flown since last maintenance.  

• External variables represent the values that are 
modified by the scheduler engine while computing the 
schedule. For example, the start and end time of an aircraft 
Fly activity will be set by the scheduler based on the 
availability of additional resources like Crews and 
Airports. External variable values depend not only upon 
the evolution of the resource machine but also upon the 
scheduling decisions made by the problem-solving control 
strategy.  

e 

co
co
int
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inp
inp
ex
ex

• Input variables serve as a mechanism for 
passing parameters between a resource requesting a 
service and a resource providing it. For example, the 
origin and destination of a Fly activity may be specified as 
input variables whose values get assigned each time a transportatio
constant variables for a given fragment of the resource behavio
variables will be further discussed when we present the concept of s

Now, with variables that take on possibly new values at each ac
behavior: 
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nstant maxCargoCapacity         :Capacity
ernal-variable duration        :Duration
ut-variable requiredCargoCapacity :Capacity
ut-variable Origin          :Location
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ternal-variable  startTime          :Time 
ternal-variable endTime         :Time 

n task needs to be satisfied. Input variables act as 
r. The role of the input variables and external 
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tivity, we can express more information about a 



 

st = 26 
ft = 30 

Fly Fly Prep OffloadPrep Fly • •
st = 25
ft = 26

st = 17
ft = 18

st = 4 
ft = 10 

st = 12
ft = 17

st = 1 
ft = 3 

Most variables of interest hold their values for the duration of an activity, and only change with the transition 
between activities. In the syntax construct used to describe valid transitions, the variables whose values change as a 
result of the transition are explicitly represented. Three external variables are pre-defined for all activity machines, 
and do not need to be explicitly represented in the assignments field of a transition: start-time, end-time, and 
duration. It is implicit in the structure of the activity machine the constraint that states that the start-time of an 
activity is always greater than or equal to the end-time of the preceding activity; and that the end-time of an activity 
is equal to or greater than the sum of its start-time and its duration.   

 
Constraints 

Not all combinations of values for the variables are physically possible. For example, if the capacity of an aircraft 
is 100 tons, then an activity in which the mani-wgt variable has a value exceeding 100 tons doesn’t model a 
realizable situation.  To rule out such impossible situations, each activity has axioms that express constraints on the 
values that variables can take on in an activity.  For example, the Fly mode in Figure 1 rules out flying activities in 
which the aircraft is carrying too much weight, or too little fuel.   

Furthermore, it is necessary to put constraints on transitions too, to model the physically realizable evolution of 
variables between activities.  For example, the transition from Prep to Fly in Figure 1 specifies that the end time of 
activity Prep should less than or equal to the start time of activity Fly. The constraints labeling a transition must refer 
to the values of variables in both the before and after modes.  The usual notation is to refer to the value of a variable 
x in the after state by priming it: x’.  So the constraint ft ≤ st’ means that the finish time of the before activity must be 
no later than the start of the after activity.  As previously mentioned, a number of temporal constraints between 
modes do not need to be explicitly represented since the structure of the machine already assumes a number of 
temporal dependencies between the sequence of valid activities. 
 
Services 

The modes or activities, the variables, the transitions, and the constraints are sufficient to represent the behavior of 
an individual resource. The key missing element of this formalism is how to connect resources to tasks, and how to 
coordinate the usage of several resources to accomplish complex tasks. For example, the transportation of certain 
amount of cargo between two locations may involve the usage of a number of different aircraft, airports, crews, fuel, 
ground control personnel, diplomatic clearances, etc. We need to provide modeling constructs that allow the explicit 
representation of these dependencies in our model. The missing modeling construct is the service.  The service is the 
element used to coordinate and synchronize the execution of activities across different resources. Each activity 
machine may specify required and/or provided services. Machines that only request services define the top-level 
tasks that drive the scheduling process. Resources are machines that provide one or more services. Resources can 
also request additional services. For example, to provide transportation service to a transportation request, the 
aircraft may need services from one or more crew resources. In this case, the resource plays the dual role of provider 
and requester. The concept of requested and provided services allows task and resources to be represented using a 
uniform formalism.  

A service is specified by a predicate associated with a mode together with an indication of whether it is a provided 
or required service.  For example, transportation service may be represented by a predicate Transport(orig, dest, st, 
ft) which specifies a transportation activity from an origin orig to a destination dest beginning at time st and ending 
at time ft.  The following mode machine provides a simple model of a transportation aircraft. 

The requester resource specifies the service as a required condition. The provider specifies it as a provided 
condition. For temporal synchronization, a service can be specified as a pre-condition, a post-condition, or an 
invariant. If the service is specified as an invariant, both activities, the requesting and the providing, should start and 
end at the same time. For the other types, there are set of rules to establish the appropriate synchronization 
depending on the characteristics of the provider and requester. For example, if the requesting service is a pre-
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condition and the providing service is a post-condition, the providing activity should finish before the requesting 
activity can start.  

There is also a set of rules governing the assignment of values to the parameters specified in the service 
description. For the requesting resource, external variables present in the service predicate will have their values set 
by the scheduler after an appropriate provider has been identified. All other variables will not change values. For the 
providing resource, input variables present in the service predicate will act as constants for the purpose of finding a 
valid sequence of activities to satisfy the request. External variables will be unified with external variables coming 
from the requester. At scheduling time, any constraints imposed on the external variables of the requester, will be 
translated to the corresponding variables of the provider.  

Before we go on to discuss how services between machines are linked up, we note that the introduction of services 
in mode machines allows us to treat tasks as a special case of resource.  Tasks (or goals or activities) are the drivers 
of a planning or scheduling problem.  The overall nature of the scheduling problem is to carry out a set of tasks 
subject to the constraints imposed by the available resources.  In terms of our mode machine model, a task can be 
modeled as a resource that requires service, but offers none.   For example, a transportation task might be modeled 
as a simple machine with three modes: 

 

Moving 

loc = pod 

At-Dest At-Orig 

requires transport(poe,pod,st,ft)
ald ≤ st  
ead ≤ ft ≤ lad 

loc = poe 

with signature: 
constant poe, pod  : Location 
constant ald, ead, lad  : Time 
constant demand   : Capacity 
external-variable st,ft   : Time 
internal-variable duration  : Duration 

 
The first mode represents the cargo waiting to be transported at its origin, called poe (port of embarkation).  The 

second mode represents the transportation activity during which transportation service is required.  And finally, the 
mode machine has a final/accepting mode in which the cargo has arrived at its destination, called pod (port of 
debarkation). 

Note how the service requirement is given two constants (poe and pod) rather than variables.  The reason of 
course is that the task provides this data to the resource that will carry out the transporting.  Additionally, note that 
the Moving mode has two axioms which express constraints on the start and finish time of the Moving activity — 
the start time must occur no earlier than the ald (Available-to-load) time and the finish time must occur between the 
ead and lad times (earlier-arrival-date and latest-arrival-date resp.)  In other words, the service requirement can be 
thought of as a service request, complete with whatever data and constraints are relevant. 

What is crucial here is that we now have various mode machines each of which governs the behavior of a class of 
tasks or resources. We have modeled the component tasks and resources individually, and now we need to model the 
composite system. To model a complex resource system we focus on the interactions of the components, which are 
specified by the services. 

We use the following service match formula schema to express the conditions under which the service provided 
by resource Prov satisfies the service required by resource Req: 

 
∀(constants (Req), input-vars (Req), constants (Prov))   
∃(ext-vars (Req), internal-vars (Req), input-vars (Prov), ext-vars (Prov), internal-vars (Prov)) 

    (Provided Conditions (Req) ∧ ProvidedConditions (Prov) 
⇒ 
    ReqConditions (Req) ∧ Constraints (Req) ∧ ReqConditions (Prov) ∧ Constraints (Prov)) 

 
While we reason about this formula statically, at design time, we do not actually expect the formula to be 

provable. We expect two kinds of information from reasoning about the formula. First, we get witnesses for the 
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existentials, meaning that for each existentially quantified variable, we extract a term over the preceding universally 
quantified variables. Second, we gather up any of the conjuncts in the consequent of the formula that cannot be 
proved. These gathered constraints are the aggregated constraints of the composite resource Req + Prov. While they 
are not provable at design-time, they will be treated as constraints to enforce at run-time (i.e. schedule-generation-
time), either via pruning or constraint propagation. The inference can be construed as a constructive version of 
directed inference [Smith82, Smith85]. 

For example, an instance of the schema for simplified models of cargo requirement and transportation aircraft is 
 

∀ (theMvr, POE, POD, ALD, LAD, EAD, theAc, FuelAmt, MaxCap) 
∃ (ac, stmvr, ftmvr, mvr, orig, dest, stac, ftac, durac) 
   (inTransit (mvr, theAc, orig, dest, stac, ftac),  
⇒    inTransit (theMvr, ac, POE, POD, stmvr, ftmvr) 
    ∧ ALD ≤  stmvr  ∧ EAD ≤ ftmvr  ∧ ftmvr ≤ LAD,  
    ∧ fuel (orig, dest) ≤ FuelAmt ∧ weight (mani) ≤ MaxCap) 

and yields the following substitutions (i.e. witness for the existentially quantified variables): 
 

mvr := theMvr, ac := theAc, orig := POE, dest := POD, stmvr := stac, ftmvr := ftac  

plus the following derived constraints 
ALD ≤  stac ∧ ALD ≤  ftac  ∧  ftac ≤ LAD ∧  
fuel(POE, POD) ≤ FuelAmt ∧ weight(mani) ≤ MaxCap 

Note how the service match exchanges data between the requester and provider. Here, the cargo requirement 
supplies the start and end points as well as the key time parameters: ALD, EAD, LAD.  The aircraft, on the other 
hand, provides its identifier as the resource that will carry out the task.  The exchange of information also includes 
the merging of constraints. 

In Planware the actual ground constraints are determined dynamically, and they depend on the input data together 
with the dynamics of the scheduling process (the current state of the process).  This is in contrast to many 
Operations Research and Constraint Programming systems in which a static set of constraints is passed to a generic 
solver. Planware not only generates a customized solver for each problem, but that solver works on a dynamic 
constraint problem. 
 
3.  Code Generation  

 
From the activity machine models described in the previous section, Planware automatically generates a fully 

operational scheduling application. The key component of the generated code is a search-based scheduling 
algorithm, and a constraint propagation mechanism. In addition to the search algorithm implementation, support 
code is also generated to represent the resources and activities, and to produce I/O for the application. In the next 
paragraphs we will explain in detail the code generation process, and the different components created by Planware.  

Planware generates search-based scheduling algorithms implementing a bidding process as its main control cycle. 
In this process, resources requiring services post tasks, or requests for bids. Provider resources capable of 
performing the type of service specified in a task respond with their best bid according to their own internal strategy. 
The requesters then collect the bids, rank them according to the requester’s objective function, select the best bid, 
and notify the selected bidders. Constraint propagation is triggered every time a bid is accepted. The propagation 
updates the internal state of the resources involved in the bidding. The rejected bids are discarded and no additional 
work is needed.  

The concrete implementation of the scheduling algorithm used in a particular application is obtained by 
instantiating and composing program schemas. A program schema is a parameterized fragment of algorithmic logic 
that gets instantiated for each service match between a given provider and requester. Different program schemas are 
used to allow a number of different bidding generation and bidding selection mechanisms to be combined in the 
implementation of an application. For example, a program schema could be used to implement a bidding mechanism 
in which the first feasible bid is accepted; a different one could collect up to n bids, and select the one that can finish 
the service with the minimum amount of time; a third one could generate all possible bids and select the one with 
earliest start-time. 
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The program schemas are composed in a tree-like structure reflecting the structure of service matches defined by 
the activity machine models. As described in the previous section, an activity machine can request or provide 
services. For each required service in the model, the generator code will search for a matching provider — a 
resource providing a service that matches the signature of the required service. As a provider for a given service can 
request additional services from other resources, the service matches define a direct acyclic graph we refer to as the 
service-match tree. The code generator traverses the service tree creating the appropriate code to formulate the task, 
generate the bids, select and accept the bid. 

MoveRequirement

Aircraft

Crew AirportAirport

inTransit

unloadload flyAircraft

MoveRequirement

Aircraft

Crew AirportAirport

inTransit

unloadload flyAircraft

Figure 3 Service Match Interface and Schematic Service Tree 

The service-match tree is an auxiliary data-structure created by Planware before the actual application generation. 
By exposing the structure of the service-match tree to the user through the graphical interface, a greater level of 
control over the code generation can be obtained. An advanced user can configure the search schemas to be used by 
the generator for each service match in the tree. Figure 6 shows the service match generated for a model in which an 
Aircraft resource can provide transportation services to a MovementRequirement task, and requires additional 
services from Crew and Airport resources. Through the GUI, the user can change the search strategy, as well as the 
sequence in which the services are satisfied. 

The constraint propagation code used to update the resources is not automatically synthesized. A standard 
implementation of an arc consistency algorithm that propagates temporal constraints on a simple temporal network 
is used. All schedulers generated share the same implementation.  

The constraint propagation is responsible for maintaining consistent start times for all scheduled activities. Each 
activity has a time bound representing the earliest and latest time the activity can start executing. Each activity time 
bound defines a node in the constraint network. The scheduler adds temporal constraints (arcs) between time bounds 
(nodes) as the problem solving process evolves. If constraint violations are detected, scheduling decisions are 
retracted, and the search backtracks to the last decision point before the violation.  

Activities and resources are closely related. Resources are represented by a capacity profile: A temporal sequence 
of activities representing the resource reservations performed by the scheduler. The profile represents a trace of the 
activity machine defined in the abstract model. The data structure used to represent the profile must be optimized for 
lookup and update. During the bid creation phase of the scheduling algorithm, the providers inspect their capacity 
profile searching for feasible intervals capable of feasibly performing the requested service. Once the requester 
accepts a bid, the selected provider updates its own profile to reflect the new reservation. Planware uses a binary tree 
implementation optimized for the particular type of resource.  

The representation of the activities in the resource profile is generated from the set of variables defined by the 
activity machine model. All activities created for a given resource instance share the same set of constants. 
Activities are defined as a product type (record structure) with a field for each variable in the model. The code to 
access and set each one of these fields is automatically generated. Additional code to print and display individual 
activities, and activities sequences is also generated to facilitate debugging, testing, and schedule visualization. A 
number of different output formats are supported: plain text, XML, etc.  
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Activities are dynamically created at schedule computation time. Activity sequences are created by the bidding 
mechanism previously discussed. The generation of the bid creation mechanism is one of the most complicated 
components of Planware. It involves the generation of code capable of querying the resource profile for feasible 
intervals, expanding the sequence of activities the resource must execute, and enforcing the constraints imposed on 
the service by both the requester and by the provider resource.  

The bid creation mechanism is implemented as a 3-step process:  
a. Identify feasible capacity intervals: Based on some approximated values of activity duration and capacity 

requirements, the algorithm queries the resource profile for capacity intervals capable of accommodating at 
least the approximated values. This approximation is used to avoid activity expansion for intervals already 
known to be infeasible.  

b. Expand activity sequence: This is the most expensive function of the algorithm. Generating the activity 
sequence requires simulating the behavior described by the activity machine until an activity capable of 
performing the desired service can be generated. Since this expansion corresponds to a fragment of the resource 
behavior that will be inserted in the profile to define the global behavior, the sequence must also maintain 
consistency between previous and next activities in the profile.  

c. Propagate constraints: Once the activity sequence is created, constraint propagation is performed to adjust the 
time bounds of newly created activities to reflect the constraints imposed by existing resource reservations, plus 
constraints imposed by the service requester.  

If these three steps generate a feasible activity sequence, a bid containing this sequence is sent to the tasker 
resource. If the bid is accepted, then the resource profile is updated to include the new sequence of activities.  

After a bid has been accepted, and the resources appropriately updated, the search algorithm change its focus to 
schedule additional pending service requirements. Depending on the configuration provided by the user through the 
service match, the search proceeds by scheduling the requirements of the current bidder, or goes back to the level of 
the previous requester, and schedule its next task. The sequence of services scheduled is determined by the service 
match structure.  

In terms of the global behavior of the application, the execution of the generated scheduler starts by reading a file 
describing all the top-level tasks, and all concrete resources available. The scheduling algorithm cycles through the 
top-level tasks, and expands the search following the structure defined by the service-match tree. If a top-level task 
cannot be satisfied using the available resources, it is marked “unschedulable” and discarded. Once there are no 
more pending tasks in the system, the scheduling algorithm finishes its execution and, if instructed to do so, outputs 
the schedule in text form, writes the schedule to an XML file, and/or displays the schedule on the GUI.  

In addition to the generated code and the constraint propagation code, a small number of library components 
representing time, capacity, and other utilities are also composed with the algorithm implementation to generate the 
final executable.  

 
4.  Implementation  

Planware’s implementation can be divided into two main components: the graphical interface and the code 
generator.  

Planware Interface 
 

The interface component is written in Java and uses the open source configurable IDE platform NetBeans, which 
is an extensible integrated development environment designed to support multiple programming languages and 
formalisms. Additional capabilities are added to the NetBeans platform by writing modules using its customization 
API. A NetBeans module is just a JAR file (collection of compressed java class files) that can be “installed” in the 
platform. A module can implement a number of different capabilities like syntax sensitive source code edition, 
compilation, execution, and debugging among others. The Planware module provides:  

1. An outline editor for editing activity machines based on a hierarchical representation of the models.  
2. A graphical editor that allows the visualization and fast specification of activity machines.  
3. A source code editor for more detailed specification of the models.  
4. Visualization tools for inspecting the results of executing the generated code on test data.  

NetBeans also provides as part of its standard module library components to manipulate and visualize the XML 
files that are generated by the scheduler as output.  
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Developing resource models in this environment requires very little knowledge of Planware syntax. The set of 
syntax constructs is small and most of the model creation activity can be accomplished using just the outline and 
graphical editors.  

A typical Planware resource model has less than a hundred lines of text, and can be created in a matter of minutes. 
A complete application model can be defined in few hours using a highly interactive environment.  

The advantage of using an extensible platform like NetBeans is that the full application development and 
execution can take place in the same environment using the same interaction paradigm. Defining models, generating 
and compiling code, and executing the scheduler are all defined using the same basic set of actions and gestures.  

Planware Code Generator 
Planware code generator is implemented as an application layer on top of Specware, Kestrel’s software synthesis 

platform [SJ96]. The code generator is a lisp process that communicates with the graphical interface through 
sockets. The interface sends commands to the lisp process to generate the scheduler code for a given model, to 

compile the generated code, and to execute the scheduler on some test data.  
The Planware code generator translates the activity machines, and service match structure into an implementation 

of the algorithms and auxiliary data-structures described in Section 3. Planware first generates an intermediate 
representation of the algorithms in MetaSlang, the specification language used internally by Specware. This 
representation is then further refined, optimized, and composed with appropriate library code to generate a highly 
optimized implementation of the scheduling application in some programming language. Planware currently can 
only generate schedulers using CommonLisp as the target language. Current work at Kestrel is developing 
generators for C and Java.  

For a problem model with 4 activity machines, specified by approximately 500 lines of text, Planware generates 
an intermediate representation with around 10,000 lines of code. The final CommonLisp code generated will be 
around 30,000 lines of code since all the library code used is included as part of the target implementation. The total 
synthesis time is a few minutes. 

In terms of run-time performance of the generated schedulers, without any special heuristics added, models with 
four resource types running on data sets with thousands of tasks, and around 20 resource instances for each resource 
type, generate schedules in a matter of seconds. The run-time performance of the generated code was around 20% 
faster than the performance provided by scheduling applications previously developed manually by the authors for 
the domain of logistical deployment.  
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5.  Concluding Remarks  
 

From a synthesis point of view, Planware emphasizes the importance of a well-designed domain-specific 
requirement language. Planware provides an answer to the question of how to help automate the acquisition of 
requirements, and how to assemble a formal requirement specification. The key idea is to focus on a narrow, well-
defined class of problems and programs, and to build a precise, abstract, domain-specific description formalism that 
covers this class.    

One view of Planware is that it takes a model of a complex resource system, specified as interacting concurrent 
processes, and generates code that prescribes legal behaviors that respect constraints and service requirements. As 
such, Planware’s modeling formalism supports scheduling, resource management, planning, and other domains, 
such as protocol design and code synthesis.  

There are a number of directions that we are pursuing to further develop Planware. The schedulers generated by 
Planware are batch-oriented and they don’t directly handle the re-scheduling that typically arises in practical 
applications. However, since the schedulers work by incrementally extending a partial schedule, it is possible to 
restart the scheduler with a modified schedule that reflects the current situation together with any new or modified 
tasks. The scheduler would then schedule forward as before, but taking the current situation into account. In current 
projects we are exploring this approach and other algorithms for handling incremental rescheduling problems. Issues 
of real-time and distributed scheduling are also being explored. 

Another direction for future work is the extension of the current formalism with objective functions (minimum 
cost, minimum lateness, etc). The question is how to infer from the objective function a sorting criterion for bids in 
order to pursue a best-first search strategy. 

In one aspect we have found the expressivity of the current activity machines a little limited. The activity 
machines in Planware are sequential in nature. However, there are certain classes of resources that are characterized 
by asynchronous concurrent reservations. Examples of such resources include fleets of vehicles, parking lots, and 
concurrently used power sources. This suggests extending the Planware activity machines to allow multithreading, 
and treating each reservation as a separate thread. Finally, other projects at Kestrel are developing generators of C 
and Java code from Specware’s MetaSlang language. We hope to exploit this work in future version of Planware. 
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